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Abstract. Accurate specification of the model error covari-
ances in data assimilation systems is a challenging issue. En-
semble land data assimilation methods rely on stochastic per-
turbations of input forcing and model prognostic fields for
developing representations of input model error covariances.
This article examines the limitations of using a single forcing
dataset for specifying forcing uncertainty inputs for assimi-
lating snow depth retrievals. Using an idealized data assim-
ilation experiment, the article demonstrates that the use of
hybrid forcing input strategies (either through the use of an
ensemble of forcing products or through the added use of the
forcing climatology) provide a better characterization of the
background model error, which leads to improved data as-
similation results, especially during the snow accumulation
and melt-time periods. The use of hybrid forcing ensembles
is then employed for assimilating snow depth retrievals from
the AMSR2 instrument over two domains in the continental
USA with different snow evolution characteristics. Over a re-
gion near the Great Lakes, where the snow evolution tends to
be ephemeral, the use of hybrid forcing ensembles provides
significant improvements relative to the use of a single forc-
ing dataset. Over the Colorado headwaters characterized by
large snow accumulation, the impact of using the forcing en-
semble is less prominent and is largely limited to the snow
transition time periods. The results of the article demonstrate
that improving the background model error through the use
of a forcing ensemble enables the assimilation system to bet-
ter incorporate the observational information.

1 Introduction

Land data assimilation (DA) methods combine observations
of land surface conditions from remote sensing platforms or
ground measurements with model forecasts to produce tem-
porally and spatially continuous estimates of land surface
fields. The merging of the observations and model forecasts
is conducted by weighting them appropriately based on their
respective sources of errors. As a result, the skill of the DA
systems is critically reliant on the accurate specification of
errors in observations and model background.

Despite their importance, the specification of input error
covariances is challenging (Dee, 1995; Derber and Bouttier,
1999; Reichle, 2008; Reichle et al., 2008). The sources of
errors in observations include instrument errors, deficiencies
of the observation operators (such as radiative transfer mod-
els) and representativeness issues from differences in spatial
scales (Kumar et al., 2012). Similarly, uncertainties in model
parameters, forcing inputs and deficiencies in model physics
contribute to the model background errors. The model er-
ror covariance specifications are often made through ideal-
ized experiments using analysis of assimilation increments
and innovations (Kumar et al., 2008, 2009). Comparison of
model simulations against independent observations is an-
other approach for developing these specifications. However,
given the lack of representativeness of the point-scale in situ
measurements and the significant heterogeneity of the land
surface, developing spatially distributed estimates of these
model error covariances are difficult. As noted in Reichle
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(2008), the specification of input error covariances remains a
subjective process in current land data assimilation systems.

Ensemble data assimilation techniques such as the ensem-
ble Kalman filter (EnKF) are widely used in land data assim-
ilation applications (Crow and Wood, 2003; Reichle et al.,
2007, 2010; Kumar et al., 2009, 2014; De Lannoy et al.,
2012). The EnKF, a Monte Carlo variant of the Kalman filter,
uses an ensemble of model trajectories to represent the model
error structures. The model error covariance is diagnosed as
the sample covariance of the ensemble of model forecasts.
The ensemble is typically created by adding stochastic noise
to the meteorological forcing, propagated to the model fields
through the nonlinear land surface model (LSM). In addi-
tion, stochastic perturbations are also commonly applied to
the model prognostic fields.

Perturbations are sampled from randomly generated noise
and are directly applied to the forcing and model prognos-
tic fields. The typical approach is to employ either normally
distributed additive perturbations or lognormally distributed
multiplicative perturbations, depending on the variable. For
example, multiplicative perturbations are normally used for
fields such as precipitation, since the use of additive noise
could generate unphysical values (less than zero) or consis-
tent positive biases during periods where precipitation is ab-
sent. In addition, to avoid introducing systematic biases in
the perturbed fields, the ensemble mean of the perturbations
are normally constrained to zero and one, for additive and
multiplicative perturbations, respectively.

In this article, we examine how the reliance on ensem-
ble perturbations of forcing fields to develop the background
model error impacts the performance of data assimilation.
Most land data assimilation systems use a single data source
as the forcing input and the input forcing uncertainty is char-
acterized by perturbing the meteorological fields from this
single data source. The accuracy of the model error covari-
ance therefore greatly depends on the accuracy of the forc-
ing input (Reichle and Koster, 2003). For example, in a case
where precipitation inputs are underestimated, the forcing
uncertainty characterized by the resulting ensemble will lead
to the underestimation of the model error covariance. In con-
trast, alternate strategies, such as the added use of the forc-
ing climatology or multiple forcing data sources, are likely
to provide better representations of the forcing uncertainty
and a better characterization of the background model error.
In this article, we examine the impact of such factors in the
context of snow data assimilation case studies.

The article presents two sets of experiments: (1) an ide-
alized experiment to demonstrate the impact of model error
covariance underestimation and (2) a “real” data assimila-
tion scenario, where snow depth retrievals (Oki et al., 2010;
Kachi et al., 2013) from the Advanced Microwave Scanning
Radiometer 2 (AMSR2) aboard the Global Change Obser-
vation Mission – Water (GCOM-W) satellite are used. The
assimilation of AMSR2 data is conducted over two differ-
ent domains in the continental USA with different snow evo-

lution characteristics. The different nature of the snow evo-
lution in these domains is used to investigate the impact
of background model error representations in snow data as-
similation. All experiments described in this article are con-
ducted using the NASA Land Information System (LIS; Ku-
mar et al., 2006), which is an observation-driven land surface
modeling and data assimilation system. The data assimilation
subsystem in LIS (Kumar et al., 2008) contains algorithms
such as the EnKF and supports the assimilation of data from
a variety of satellite sensors (Reichle et al., 2010; Liu et al.,
2013, 2015; Kumar et al., 2014, 2015, 2016).

2 Ensemble Kalman filter and background error
covariance representation

The filtering class of data assimilation algorithms seeks the
best estimate of the posterior state conditioned on the past
observations, using the statistics of the uncertainties in the
model and observations. The Kalman filter (KF) is an opti-
mal estimator for linear dynamical systems driven by Gaus-
sian noise. The EnKF is a reduced-rank variant of the KF,
which assumes normality of model and observation errors
and typically requires the use of a small number of ensem-
bles to represent these error structures (Reichle, 2008).

EnKF is a sequential data assimilation approach, where the
algorithm alternates between a forecast step and an analysis
step. In the forecast step, an ensemble of model states is prop-
agated forward in time using the LSM. This is followed by
an analysis step where the model forecast is updated based
on observations. The analysis step is written in the general
form as

xa
k = xb

k +Kk[yk −Hkxb
k], (1)

where xb is the background model state vector, xa is the an-
alyzed state vector, y is the observation vector and Hk is
the observation operator that relates the model states to the
observations. The subscript k indicates time and the super-
scripts b and a refer to the state estimates, before and after the
update, respectively. Kk is the gain matrix, which represents
the weighting factor that determines the degree to which the
model forecast is adjusted towards the observation. Kk is ex-
pressed as

Kk = Pb
kHT

k

[
HkPb

kHT
k +Rk

]−1
, (2)

where Rk and Pb
k are the observation and forecast model error

covariances, respectively (exponent T refers to the transpose
of a matrix). The model error covariance is computed as the
sample covariance of the model ensemble.

EnKF relies on the second-order statistics of the noise sim-
ulated by ensemble perturbations in the model and obser-
vations (drawn from Gaussian distributions), to characterize
their probability density functions. The accuracy of the sam-
pled model error covariance, in particular, is dependent on
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Figure 1. Schematic of the three strategies used to specify forcing
uncertainty in the data assimilation integrations: (a) a single forcing
dataset, (b) a single forcing dataset and its climatology and (c) an
ensemble of forcing products. In all three cases, perturbations are
applied to the forcing inputs to generate the ensemble.

the size of the ensemble and the presence of model errors
(Li et al., 2009). Prior studies have used techniques such as
covariance inflation (Anderson and Anderson, 1999) to deal
with the covariance underestimation. These techniques, how-
ever, require significant tuning and rely on the assumption
that the observation error covariances are known (Miyoshi
and Yamane, 2007). In addition, these inflation techniques
are ineffective when the model errors are significant and the
resulting model error covariances are close to zero. In the ex-
amples below, the impact of underestimating the background
model error for snow data assimilation is examined.

Figure 1 shows a schematic of three strategies that are used
to examine the issue of model covariance underestimation in
this article. The first strategy (A), which is the typical prac-
tice in land data assimilation systems, is to use a single forc-
ing dataset to drive the ensemble. The small perturbations
applied to the input forcing variables help in simulating the
ensemble spread. In the second strategy (B), the ensemble is
forced with both the given forcing and a climatology of that
forcing. The added use of the forcing climatology helps in
incorporating the representation of average conditions within
the ensemble and in reducing the covariance underestimation
due to the reliance and limitations of a single dataset. In the
third approach (C), the model ensemble is driven using an
ensemble of forcing products from different sources, provid-
ing a more realistic representation of the input forcing uncer-
tainty. Note that small perturbations to the forcing variables
are also applied to (B) and (C) forcing data to augment the
ensemble spread.

3 Assessing the impact of model error covariance
underestimation through idealized experiments

In this section, we present an idealized snow depth DA ex-
periment to demonstrate the importance of accurately char-
acterizing the input model error covariances. We employ
snow depth as the measurement variable as most passive
microwave retrieval algorithms (Chang et al., 1987; Kelly
et al., 2003; Kelly, 2009), compute snow depth first and de-
rive the snow water equivalent (SWE) through a climatolog-
ical snow density (Brown and Braaten, 1998; Krenke, 1998)

assumption. In addition, most in situ observations of snow
are also available as depth measurements, allowing for a
more straightforward evaluation of the results from the model
and DA integrations. The synthetic experiment is conducted
at the Niwot Ridge site in Colorado (40.03◦ N, 105.5◦W),
which is part of the NRCS Snow Telemetry (SNOTEL) net-
work. All model simulations are conducted using the Noah
land surface model version 3.3 (Ek et al., 2003). The DA
experiment is set up as an identical twin experiment (Ku-
mar et al., 2009) with the following structure: first, the Noah
LSM is run forced with meteorology from the North Ameri-
can Land Data Assimilation System Phase 2 (NLDAS-2; Xia
et al. (2012)), and is assumed to represent the “true” state
of snow depth evolution at this location. This model integra-
tion is termed as the control or “truth” simulation. Next, a set
of synthetic snow depth observations is simulated from this
control run by introducing realistic retrieval errors. Similar to
the strategies used in previous studies (Kumar et al., 2008), to
account for the limitations of the passive microwave sensors
in retrieving snow depth under dense canopies, the observa-
tions are masked out when green vegetation fraction values
used in the model are greater than 0.6. In addition, obser-
vations are degraded by introducing multiplicative random
noise with standard deviation of 0.05 to simulate the errors
in the snow depth retrievals. An open loop (OL) integration
is conducted using the same LSM, but forced with a different
meteorology from the Agricultural Meteorology (AGRMET)
model of the US Air Force 557th Weather Wing (formerly
the Air Force Weather Agency). A data assimilation integra-
tion is then conducted by incorporating the simulated obser-
vations into the OL configuration using a one-dimensional
EnKF (Reichle et al., 2002). The modeled estimates from the
OL and DA integrations are compared against the true fields
from the control run to evaluate the impact of assimilation.

An ensemble size of 20 is used in the integrations with per-
turbations applied to both meteorological forcing inputs and
model prognostic fields to simulate the background model
error. Multiplicative perturbations are applied to the precip-
itation and downwards shortwave fields with a mean of 1
and standard deviations of 0.3 and 0.5, respectively. Additive
perturbations with a standard deviation of 50 W m−2 are ap-
plied to the long-wave radiation fields. The Noah LSM model
fields of SWE and snow depth are perturbed with multiplica-
tive noise of 0.01 and 0.02, respectively. Time series correla-
tions are imposed via a first-order regressive model (AR(1))
with a timescale of 24 h for forcing variables and 12 h for
the model fields. The perturbations to the forcing fields are
applied hourly, whereas the model prognostic fields are per-
turbed at 3 h intervals, similar to the configurations used in
Kumar et al. (2015, 2014).

Figure 2 shows a time series of the snow depth fields
from model integrations for the 2012–2013 winter sea-
son, from the control, synthetic observations (OBS), open
loop simulation forced with a single meteorological dataset
(OL_FSNGL), and the data assimilation integration that as-
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Figure 2. Snow depth time series for the water year of 2012–
2013 from the open loop (OL_FSNGL) and data assimilation
(DA_FSNGL) integrations using a single forcing dataset, for the
synthetic snow data assimilation experiment. The control simula-
tion and the simulated observations are also shown.

similates observations into the OL_FSNGL configuration
(DA_FSNGL). Note that the OL_FSNGL configuration in-
cludes the ensemble perturbations to the forcing and model
state fields, to exclude any changes in model skill intro-
duced by the perturbations in the evaluation of the DA re-
sults. The control and OL_FSNGL runs are significantly dif-
ferent in their simulation of snow depth for this winter sea-
son. The OL_FSNGL-based snow depth estimates vastly un-
derestimate the snow evolution, likely due to the underesti-
mation of precipitation in the AGRMET data at this loca-
tion. The assimilation of the observations helps in signifi-
cantly improving the OL_FSNGL representation, especially
during the peak winter months of January through March.
The simulation of snow depth during the snow accumula-
tion time periods and the snowmelt time periods, however,
shows significant differences relative to the control simula-
tion, though synthetic observations of snow depth exist dur-
ing these time periods. As shown in Fig. 2, the snow accumu-
lation in the OL_FSNGL simulation is significantly delayed
relative to the control. The input model error covariances
(Pbk ), therefore, remain close to zero until mid-December
2012, when non-zero snow depth estimates are observed in
the OL_FSNGL configuration. These model errors result in
the gain matrix (Kk) being zero when the background model
error variances are zero. As a result, no non-zero analysis in-
crements are generated from the DA analysis and no changes
in the snow depth fields from DA are observed until mid-
December, 2012. In contrast, during the peak winter months,
the snow depth estimates from DA_FSNGL are closer to the
control simulation, as the availability of a non-zero model
error covariance allows DA to compute positive analysis in-
crements. Further, the DA_FSNGL integration also fails to
capture the late season snow events (late April and early May
2013), as the deficiencies in the background model error re-
sult in the inability of the analysis step to produce meaningful
analysis increments.

In the above example, the main source of the model defi-
ciencies is the errors in the forcing inputs, as the same model

is used in the control and open loop integrations. Two vari-
ants of this experiment are conducted by (1) using the forcing
climatology in combination with the input forcing to spec-
ify the ensemble (EXP-FCLIM) and (2) using an ensemble
of forcing datasets to drive the ensemble (EXP-FENS). A
climatological forcing dataset is developed by averaging the
forcing inputs (used in OL_FSNGL) at each forcing time step
across 4 years (2012 to 2015). In EXP-FCLIM, the forcing
climatology is used to drive 10 of the 20 ensemble mem-
bers with the remaining 10 driven by the OL_FSNGL forcing
data. In EXP-FENS, four different forcing datasets (different
from the data used in the control) are used to drive the model
ensemble. The forcing products used in EXP-FENS include
the Global Data Assimilation System (GDAS; Derber et al.,
1991) operational outputs from NOAA/NCEP, the Modern
Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2; Bosilovich et al., 2017) data, the Eu-
ropean Center for Medium Weather Forecasting (ECMWF;
Molteni et al., 1996) and AGRMET datasets. Each forcing
data are used to drive five ensemble members within the 20
member ensemble. As before, perturbations are applied to
both forcing and model states. These strategies assume that a
better representation of the forcing uncertainty and model er-
ror covariance can be developed by augmenting the ensemble
through the use of multiple data sources.

Panel (a) in Fig. 3 shows the time series of snow depth
from open loop and DA integrations from the EXP-FCLIM
and EXP-FENS experiments, panel (b) shows comparisons
of the snow depth ensemble spread from DA integrations
and panel (c) shows comparisons of the analysis increments
in snow depth from DA. In the EXP-FCLIM experiment,
it can be noted that the added use of forcing climatology
with the OL_FSNGL forcing is helpful in increasing the en-
semble spread in the DA integrations without a significant
change to the mean snow-depth estimates. Subsequently, the
improved background model error representation leads to
improved DA performance, as the DA_FCLIM-based esti-
mates are improved relative to the DA_FSNGL estimates.
The improvements are more apparent during the snow ac-
cumulation (December–January) and melt (April–May) time
periods, though they are significantly underestimated rela-
tive to the control. Quantitatively, the root mean square er-
ror (RMSE) in the OL_FSNGL and OL_FCLIM integrations
for the Oct 2012 to Jun 2013 time period is 85 mm. The
DA_FSNGL integration with a single forcing dataset has a
RMSE of 55 mm and the added use of the forcing ensemble
helps in further reducing the overall RMSE to 48 mm in the
DA_FCLIM integration.

Comparatively, the use of an ensemble of forcing prod-
ucts provides significantly improved performance in the as-
similation of synthetic observations. First, a significant por-
tion of the bias in the snow depth estimates is reduced by
the forcing ensemble-based open loop (OL_FENS). The cu-
mulative RMSE of the OL_FENS integration is 56 mm. The
use of the forcing ensemble then helps in improving the DA
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simulations (DA_FENS), as it shows a closer match with
the control relative to all other DA integrations. In partic-
ular, DA_FENS shows improvements in the accumulation
(November–December) and snowmelt (March–April) peri-
ods, and provides a low RMSE of 29 mm, for the time period
of Oct 2012 to June 2013.

Comparisons of the analysis increments from DA inte-
grations shown in panel (c) indicate the time periods where
the impact of the background model error is more signifi-
cant. Generally, the analysis increments from DA_FSNGL
and DA_FCLIM are similar, except during the snow accu-
mulation and melt-time periods. Comparatively, larger dif-
ferences in the analysis increments between the DA_FSNGL
and DA_FENS integrations are observed, with more promi-
nent differences seen during the accumulation and melt pe-
riods. During these times, larger analysis increments are ob-
served in the DA_FCLIM and DA_FENS integrations, re-
flective of the ability of these configurations to respond to
observations due to the improved background model error.
It can also be noted that the analysis increments during the
peak snow season are generally smaller in DA_FENS and
DA_FCLIM integrations compared to that of DA_FSNGL,
indicating the contribution of the hybrid forcing inputs for
reducing the significant biases in the assimilation system.

4 Impact of forcing ensemble in the assimilation of
AMSR2 snow depth retrievals

The idealized experiments presented in the previous sec-
tion demonstrate that the use of hybrid forcing ensemble
strategies is helpful in providing a better characterization of
the forcing uncertainty and the background model error. We
extend this approach to a “real” data assimilation scenario
where passive microwave snow depth observations from the
AMSR2 instrument are employed. These retrievals, avail-
able from 2012 July onwards, are obtained from the Japan
Aerospace Exploration Agency (JAXA; http://suzaku.eorc.
jaxa.jp/GCOM_W/data/data_w_index.html). In all the inte-
grations assimilating AMSR2 retrievals, the standard devia-
tion of the observation error is assumed to be 50 mm. Note
that we use a higher value of observation error standard de-
viation than that reported by Kachi et al. (2013), based on
the previous snow DA studies (Liu et al., 2013, 2015; Kumar
et al., 2014, 2015) that generally assume low skill for passive
microwave snow depth retrievals.

Land surface model simulations using the Noah LSM (ver-
sion 3.3) are conducted over two regional model domains in
the continental USA (Fig. 4) at 25 km spatial resolution: (1) a
region centered around the Great Lakes (GL) and (2) a do-
main centered around the Colorado headwaters (CH). The
snow evolution in the GL region tends to be ephemeral, wet
and shallow, whereas the CH region is a high-terrain domain
with complex topography and large seasonal snowpacks. The
impact of different background model error representations
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Figure 3. Similar to Fig. 2, with the time series of model simula-
tions from EXP-FCLIM and EXP-FENS included (a). The FCLIM
experiments employ the use of a single forcing dataset and its cli-
matology to force the ensemble and the FENS experiments employ
the use of an ensemble of forcing datasets. The time series in (b) of
the top and bottom figures compares the ensemble spread from the
DA_FCLIM and DA_FENS integrations to the ensemble spread of
DA_FSNGL integration, respectively. Panel (c) shows comparison
of the analysis increments from DA integrations.

on the assimilation of AMSR2 data is examined over these
two domains with contrasting snow development and melt
characteristics.

Similar to the synthetic data assimilation experiment pre-
sented in Sect. 3, the model simulations are conducted with
a single meteorological forcing dataset, a single meteorolog-
ical forcing dataset and its climatology, and an ensemble of
forcing datasets. The AGRMET data are used as the single
meteorological forcing data. In the forcing ensemble-based
runs, in addition to AGRMET, three other forcing datasets
are used, which include the GDAS, NLDAS-2 and MERRA-
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Figure 4. Two study domains with the 1 km terrain elevation (m) as the background: (a) GL domain and (b) CH domain. The yellow circles
indicate the locations of the grid cells used for time series comparisons.

2 datasets. The LSM simulations are conducted during a time
period of October 2012 to December 2015 with a time step
of 30 min.

We focus first on the GL region by comparing the snow
evolution from various model and data assimilation inte-
grations. Figure 5 presents a “RMSE improvement” map
(RMSE of DA with the single forcing (DA_FSNGL) mi-
nus the RMSE of DA with the hybrid forcing ensemble
(DA_FCLIM or DA_FENS)) by comparing to the in situ
snow depth measurements at the Global Historical Climate
Network (GHCN; Menne et al., 2012) sites. The available
station observations are aggregated up to the model reso-
lution through simple averaging in these comparisons. The
warm colors indicate locations where the DA_FCLIM or
DA_FENS has a reduced RMSE compared to DA_FSNGL
and the cool colors indicate locations where DA_FSNGL has
an increased skill relative to DA_FCLIM or DA_FENS. As
the figure indicates, the DA integrations employing hybrid

forcing inputs are systematically better than the DA_FSNGL
simulation in most parts of the domain. Comparatively, the
RMSE improvements are larger in the DA_FENS integra-
tion than the DA_FCLIM simulation. Note that the improved
skill of DA_FENS in particular, is benefited by both the im-
proved model background and the skill of the precipitation
data sources that constitute the forcing ensemble, though it is
hard to separate their contributions. This is demonstrated by
comparing the time series of model and DA simulations at
two locations: point A, at 45.875◦ N, 89.375◦W and point B,
at 48.875◦ N, 97.625◦W.

As shown in Fig. 6a, the OL_FSNGL simulations sig-
nificantly underestimate the snow evolution throughout the
winter period of 2012–2013. The added use of the forc-
ing climatology (OL_FCLIM) leads to overestimating the
peak season snow (Feb–Mar) and marginally improves the
late season snow. Similarly, the use of the forcing ensemble
(OL_FENS) marginally improves the OL_FSNGL underesti-
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Figure 5. RMSE (mm) differences of snow depth fields from DA
integrations using hybrid ensemble forcing strategies (DA_FCLIM
and DA_FENS) relative to the DA integration using a single forcing
(DA_FSNGL) over the Great Lakes domain, using GHCN data as
the reference, for the time period of 2012 to 2015. Warm colors in-
dicate locations where DA_FCLIM or DA_FENS provides a lower
RMSE than DA_FSNGL and cool colors indicate locations where
DA_FSNGL has a lower RMSE than DA_FCLIM or DA_FENS.

mation (especially during the early snow season), but fails to
capture the late season snow events. The AMSR2 retrievals
at this location are primarily available in the late snow sea-
son and help in improving the snow depth simulation through
DA. Overall, the limitations of the OL_FSNGL prevents
DA from making a significant impact in the DA_FSNGL
simulation. The availability of the improved background in
DA_FCLIM and DA_FENS enables them to provide a bet-
ter match to the relatively large snow events in March and
April, compared to other simulations. Table 1 shows a sum-
mary of the cumulative RMSE from various simulations at
these locations. The cumulative RMSE from the OL_FSNGL
is 381 mm, which reduces to 275 and 169 mm with the
OL_FCLIM and OL_FENS, respectively. The cumulative
RMSE in the DA integrations is 266 mm for DA_FSNGL,
262 mm in DA_FCLIM and 244 mm in DA_FENS. Note that
the cumulative RMSE does not reflect the obvious improve-
ment during the late season snow periods in DA_FENS (over
OL_FENS), as the early season underestimation dominates
these statistics.

Figure 6b shows a similar time series comparison at
point B with larger snow evolution. Similar to point A,
OL_FSNGL underestimates the snow evolution throughout
the season (RMSE of 252 mm) and is improved by the use of
the hybrid forcing ensembles. During the snow accumulation
time periods (up to early February 2013), the OL_FCLIM
(RMSE of 201 mm) and OL_FENS (RMSE of 167 mm) es-
timates show better agreement with the GHCN measure-
ments. The AMSR2 retrievals show significant underestima-
tion relative to GHCN during the peak snow season, though
they are helpful in improving the snow depth simulations in

Table 1. Cumulative RMSE (mm) from various model and DA in-
tegrations at the four locations in the Great Lakes and Colorado
headwaters domains used in the Figs. 6 and 8.

Experiment GL domain CH domain
name A B C D

OL_FSNGL 381 252 424 276
DA_FSNGL 266 206 316 327
OL_FCLIM 275 201 402 142
DA_FCLIM 262 156 309 312
OL_FENS 169 167 179 215
DA_FENS 244 162 285 309
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Figure 6. Time series of snow depth fields at location A (a)
and B (b) from model open loop (OL_FSNGL, OL_FCLIM
and OL_FENS), data assimilation (DA_FSNGL, DA_FCLIM and
DA_FENS), AMSR2 and in situ (GHCN).

the late snow season (March–May). The impact of the im-
proved model background can be noted in the DA_FCLIM
and DA_FENS simulations in their ability to provide a bet-
ter match with the GHCN observations in the late snow sea-
son. The single-forcing-based DA estimate (DA_FSNGL),
on the other hand, does a poor job in this time period de-
spite the availability of AMSR2 retrievals that are consistent
with GHCN. The cumulative RMSE of the DA_FSNGL in-
tegration at this location is 206 mm and it improves to 156
and 162 mm in the DA_FCLIM and DA_FENS integrations.

A similar set of evaluations are conducted over the CH
domain, an area with deeper seasonal snow accumulation
compared to the GL region. Figure 7 presents the RMSE im-
provement map for the CH domain (similar to Fig. 5). Com-
pared to the improvements observed in the GL domain, the
patterns of improvements and degradations are more mixed
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in the CH domain. In addition, larger improvements and
degradations are observed in the DA_FCLIM and DA_FENS
integrations relative to DA_FSNGL. To examine these pat-
terns, the time series of snow evolution from various in-
tegrations is compared at two locations in the CH domain
(point C at 40.375, 106.875 and point D at 45.125, 109.875)
and are shown in Figure 8. OL_FSNGL underestimates the
snow evolution in both locations (RMSE of 424 and 276 mm
at C and D, respectively, as shown in Table 1). The added use
of the climatology (OL_FCLIM) marginally improves the
snow simulation at location C (RMSE of 402 mm) and pro-
vides more significant improvements at location D (RMSE
of 142 mm). The use of the forcing ensemble (OL_FENS)
provides a better match to the observations at location C
(RMSE of 179 mm), but overestimates the snow accumula-
tion at location D (RMSE of 215 mm). At location C, the as-
similation of AMSR2 improves the snow depth estimates in
DA_FSNGL (RMSE of 316 mm) and DA_FCLIM (RMSE of
309 mm) integrations relative to their respective OL, whereas
DA leads to degradations in the forcing ensemble configu-
ration (RMSE of 285 mm), compared to OL_FENS. At lo-
cation D, the assimilation of AMSR2 retrievals leads to in-
creased RMSE in the DA integrations (RMSE of 327, 312
and 309 mm for DA_FSNGL, DA_FCLIM and DA_FENS,
respectively). These trends are reflective of the fact that the
AMSR2 observations underestimate the snow evolution in
the peak winter months (January–March) and overestimates
snow estimates in the spring melt-time periods (April–May),
at location C. At location, D, however, the AMSR2 snow
observations are generally underestimated. The underesti-
mation of snow at both these locations is likely due to the
fact that passive microwave-based retrievals saturate for thick
snowpacks (Dong et al., 2005).

In general, the DA integrations (DA_FSNGL, DA_FCLIM
and DA_FENS) have comparable performance at both these
locations and they mostly follow the snow evolution patterns
in the AMSR2 data. Note that though AMSR2 observations
capture the seasonality of snow observations, they show sig-
nificant underestimation compared to in situ observations of
snow depth. The influence of undersampling the background
model error can be observed in the early part of the snow
season at location C and during late season at location D,
where the DA_FSNGL integrations fail to match the snow
events captured by AMSR2. During the peak snow time peri-
ods, however, the undersampling of background model error
in OL_FSNGL is less of a problem over this domain, as the
non-zero model snow states provide an adequate background
for subsequent data assimilation updates. Thus, the evalua-
tion of the snow DA integrations at these two regions provide
valuable insights on the importance of accurately character-
izing the background model error. The use of the hybrid forc-
ing ensemble and improved model background is more help-
ful over the GL domain, where snow evolution is ephemeral.
Over regions with large snowpacks such as the CH region,
the representation of the model background is more impor-
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RMSE (DA_FSNGL) - RMSE (DA_FCLIM)

°
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°
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°°°°
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Figure 7. Same as Fig. 5, but for the Colorado headwaters domain.

tant during the early accumulation and spring melt-time pe-
riods.

5 Summary

Accurate specification of input model and observations er-
ror covariances in data assimilation systems is challenging
though these error specifications are critical in the develop-
ment of a skillful data assimilation system. In offline ensem-
ble land data assimilation systems, the model ensemble and
background model error representation are typically gener-
ated by applying small perturbations to the model prognostic
states and input meteorological forcing fields. Most Land DA
studies are reliant on the use of a single forcing dataset to de-
rive their driving meteorology.

In this article, the limitations of using a single forcing
dataset as the basis for developing background model error
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Figure 8. Time series of snow depth fields at location C (a)
and D (b) from model open loop (OL_FSNGL, OL_FCLIM
and OL_FENS), data assimilation (DA_FSNGL, DA_FCLIM and
DA_FENS), AMSR2 and in situ (GHCN).

is examined in the context of snow data assimilation. When
significant errors are present in the forcing fields (e.g., pre-
cipitation), the resulting model and ensemble estimates will
have significant errors. In such instances, the use of an en-
semble of forcing datasets, either based on climatology or
a suite of independent datasets, is likely to provide a better
representation of the forcing uncertainty and the background
model error. This article demonstrates these issues through
both idealized and real data assimilation experiments.

The idealized experiment presents a case where the snow
depth estimates are significantly underestimated due to the
presence of precipitation biases. The application of stochas-
tic perturbations using this biased precipitation input is inad-
equate in providing a realistic background model error in the
assimilation system. As a result, the snow depth fields in the
DA system remain biased, especially during the snow evolu-
tion and spring melt periods. In contrast, when an ensemble
of forcing datasets is used to drive the model, the represen-
tation of the background model error is more realistic. As a
result, the assimilation system performs better in incorporat-
ing the impact of observations during the snow evolution and
ablation periods.

The impact of using a forcing ensemble for developing the
background model error is examined for the assimilation of
snow depth retrievals from the AMSR2 instrument, over two
domains in the Continental USA with different snow evolu-
tion characteristics. Over the region near the Great Lakes, the
snow evolution tends to be shallow, with transitions between
snow and no-snow conditions during each snow season. In

this region, the added use of the forcing climatology to drive
the ensemble leads to improved DA performance, when com-
pared to the in situ ground observations of snow depth. The
DA performance is further enhanced with the use of an en-
semble of forcing inputs, partly aided by the enhanced skill
of the precipitation inputs. Over the Colorado headwaters, an
area with large seasonal snowpacks, the impact of precipita-
tion biases on the simulation of snow states is largely lim-
ited to the snow evolution and ablation time periods. As the
occurrences of transitions between snow and no-snow states
are less common during the peak winter months in this re-
gion, the underestimation of the background model error is
less problematic in the DA integrations during these time pe-
riods. As a result, the positive impact of the use of forcing
ensemble is mostly prominent during the accumulation and
ablation time periods.

As noted above, the evaluation of snow depth estimates
over CH region shows mixed results, with several locations
indicating a worse performance with the use of the forcing
ensemble compared to the use of a single forcing dataset.
In regions with large snow accumulation (such as the CH
region), passive microwave retrievals such as those from
AMSR2 are known to have low skill due to issues such as
saturation in deep snowpacks, signal loss in wet snow and
overestimation in the presence of large snow grains (Dong
et al., 2005; Foster et al., 2005; Durand et al., 2011). Such
limitations contribute to the mixed results seen in these re-
sults, especially in the CH domain. In such instances, the
poorer performance from the use of the forcing ensemble is
a result of the poor skill of the retrievals. To improve the
skill of the retrievals themselves, prior studies (Kumar et al.,
2014; Liu et al., 2015) have successfully employed objective
analysis techniques such as optimal interpolation to blend in
situ measurements with satellite retrievals prior to assimila-
tion. These prior studies and the results of this article suggest
that a strategy that combines the use of hybrid forcing inputs
(to improve background model error) and in situ data-based
correction of observations to be assimilated (to enhance the
satellite retrievals) is likely to provide a robust configuration
for optimal DA performance.

It must be stressed that in the experiments presented in
the article, the OL_FSNGL configurations purposely employ
an inferior forcing dataset so that the differences between
the OL_FSNGL, OL_FCLIM and OL_FENS simulations are
more magnified. If the single forcing dataset being used is of
high skill, then the added benefit of using the forcing ensem-
ble is likely to be less, consistent with the results of more re-
cent studies to employ an ensemble of forcing data for gener-
ating an ensemble of internally consistent model uncertainty
representation for applications such as DA (Newman et al.,
2015; Huang et al., 2017). Overall, the results in this article
indicate that use of a forcing ensemble is helpful in providing
better representations of background model error and more
positive and consistent improvements in data assimilation.
Note also that the use of an ensemble of forcing products
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may be practical in operational assimilation environments for
centers with ensemble prediction systems. Where not avail-
able, the combined use of the forcing climatology along with
the single, operational forcing input may be an appropriate
strategy to improve the skill of the data assimilation system,
as validated by the results in this paper.
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