Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 2
Hydrol. Earth Syst. Sci., 21, 1279–1294, 2017
https://doi.org/10.5194/hess-21-1279-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Modeling hydrological processes and changes

Hydrol. Earth Syst. Sci., 21, 1279–1294, 2017
https://doi.org/10.5194/hess-21-1279-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2017

Research article | 02 Mar 2017

Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

Ji Li et al.

Viewed

Total article views: 1,980 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,189 753 38 1,980 41 50
  • HTML: 1,189
  • PDF: 753
  • XML: 38
  • Total: 1,980
  • BibTeX: 41
  • EndNote: 50
Views and downloads (calculated since 20 Oct 2016)
Cumulative views and downloads (calculated since 20 Oct 2016)

Viewed (geographical distribution)

Total article views: 1,957 (including HTML, PDF, and XML) Thereof 1,935 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 23 Oct 2020
Publications Copernicus
Download
Short summary
Quantitative precipitation forecast produced by the WRF model has a similar pattern to that estimated by rain gauges in a southern China large watershed, hydrological model parameters should be optimized with QPF produced by WRF, and simulating floods by coupling the WRF QPF with a distributed hydrological model provides a good reference for large watershed flood warning and could benefit the flood management communities due to its longer lead time.
Quantitative precipitation forecast produced by the WRF model has a similar pattern to that...
Citation