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Abstract. Long lead time flood forecasting is very impor-
tant for large watershed flood mitigation as it provides more
time for flood warning and emergency responses. The latest
numerical weather forecast model could provide 1–15-day
quantitative precipitation forecasting products in grid format,
and by coupling this product with a distributed hydrolog-
ical model could produce long lead time watershed flood
forecasting products. This paper studied the feasibility of
coupling the Liuxihe model with the Weather Research and
Forecasting quantitative precipitation forecast (WRF QPF)
for large watershed flood forecasting in southern China. The
QPF of WRF products has three lead times, including 24,
48 and 72 h, with the grid resolution being 20 km× 20 km.
The Liuxihe model is set up with freely downloaded terrain
property; the model parameters were previously optimized
with rain gauge observed precipitation, and re-optimized
with the WRF QPF. Results show that the WRF QPF has
bias with the rain gauge precipitation, and a post-processing
method is proposed to post-process the WRF QPF prod-
ucts, which improves the flood forecasting capability. With
model parameter re-optimization, the model’s performance
improves also. This suggests that the model parameters be
optimized with QPF, not the rain gauge precipitation. With
the increasing of lead time, the accuracy of the WRF QPF de-
creases, as does the flood forecasting capability. Flood fore-
casting products produced by coupling the Liuxihe model
with the WRF QPF provide a good reference for large wa-
tershed flood warning due to its long lead time and rational
results.

1 Introduction

Watershed flood forecasting is one of the most important
non-engineering measures for flood mitigation (Tingsan-
chali, 2012; Li et al., 2002), and significant progress in wa-
tershed flood forecasting has been made in the past decades
(Borga et al., 2011; Moreno et al., 2013). Lead time is a key
index for watershed flood forecasting, especially for large
watersheds (Toth et al., 2000; Han et al., 2007). Only flood
forecasting products with a long lead time are useful as they
could provide enough time for flood warning and flood emer-
gency responses. In the long practice of flood forecasting,
ground-based rain gauge measured precipitation is the main
input for flood forecasting models, but as this kind of precip-
itation is the rainfall falling to the ground already, it has no
lead time. This makes watershed flood forecasting have very
short lead times (Jasper et al., 2002), and could not satisfy
the requirement of flood warning (Shim et al., 2002) in lead
time, particularly in large watersheds, thus reducing the value
of the flood forecasting products in watershed flood mitiga-
tion.

The developed numerical weather prediction models in
the past decades could provide a longer lead time quanti-
tative precipitation forecast (QPF) product in grid format.
The lead time for the latest weather prediction model could
be as long as 1–15 days (Buizza et al., 1999; Ahlgrimm et
al., 2016). By coupling the QPF weather prediction model
with a flood forecasting model, the flood forecasting lead
time could thus be extended. This provides a new way
of large watershed flood forecasting (Jasper et al., 2002;
Zappa et al., 2010; Giard and Bazile, 2000). Many numer-
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ical weather prediction models have been proposed and put
into operational use, such as the European Centre Medium-
Range Weather Forecasts (ECMWF) Ensemble Prediction
System (EPS) (Molteni et al., 1996; Barnier et al., 1995),
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2005, 2008; Maussion et al., 2011), the nu-
merical weather forecast model of the Japan Meteorological
Agency (Takenaka et al., 2011; Gao and Lian, 2006), the nu-
merical forecast model of the China Meteorological Agency
(Li and Chen, 2002), and others.

Watershed flood forecasting relies on a hydrological model
for a computation tool, while the precipitation is the model’s
driving force. The earliest hydrological model is regarded as
the Sherman unit graph (Sherman, 1932), which belongs to
the category of lumped hydrological models. Many lumped
hydrological models have been proposed, such as the Sacra-
mento model (Burnash, 1995), the NAM model (DHI, 2004),
and the Xinanjiang model (Zhao, 1977). The lumped hydro-
logical model regards the watershed as a whole hydrological
unit; thus, the model parameter is the same over the water-
shed, but this is not true, particularly for a large watershed.
The precipitation the lumped hydrological model uses is av-
eraged over the watershed also. This further increases the
model’s uncertainty in large watershed flood forecasting as
it is well known that the precipitation distribution over the
watershed is highly uneven. The QPF produced by numerical
weather prediction model forecasts precipitation in grid for-
mat, which provides detailed precipitation distribution infor-
mation over watersheds. This is another advantage of QPF.
The lumped hydrological model could not take advantage of
gridded WPF products.

The latest development of watershed hydrological mod-
els is the distributed hydrological model (Refsgaard, 1997),
which divides the watershed into grids, and different grids
could have their own precipitation, terrain property and
model parameter. Hence a distributed hydrological model is
the ideal model for coupling the WRF QPF for watershed
flood forecasting. The first proposed distributed hydrological
model is the SHE model (Abbott et al., 1986a, b), and now
many distributed hydrological models have been proposed,
and a few have been used for watershed flood forecasting,
such as the SHE model (Abbott et al., 1986a, b), the WA-
TERFLOOD model (Kouwen, 1988), the VIC model (Liang
et al., 1994), the WetSpa model (Wang et al., 1997), the Vflo
model (Vieux and Vieux, 2002), the WEHY model (Kavvas
et al., 2004), and the Liuxihe model (Chen, 2009; Chen et al.,
2011).

As the distributed hydrological model calculates the hy-
drological process at grid scale, so the computation time
needed for running the distributed hydrological model is
huge even for a small watershed. This limits the model’s
application in watershed flood forecasting, particularly in a
large watershed. Model parameter uncertainty related to the
distributed hydrological model also impacted its application.
But with the development of a parallel computation algo-

rithm for the distributed hydrological model and its deploy-
ment on a supercomputer (Chen et al., 2013), the computa-
tion burden is not a great challenge of distributed hydrolog-
ical modeling anymore. Also, with the development of auto-
matical parameter optimization of the distributed hydrolog-
ical model in flood forecasting (Madsen, 2003; Shafii and
De Smedt, 2009; Xu et al., 2012; Chen et al., 2016), the
model parameters could be optimized, and the model’s per-
formance could be improved greatly. With these advances,
now the distributed hydrological model could be used for
large watershed flood forecasting.

In this paper, the WRF QPF is coupled with a distributed
hydrological model – the Liuxihe model – for large water-
shed flood forecasting in southern China. The spatial and
temporal resolution of the WRF QPF is at 20 km× 20 km and
1 h, respectively, with three lead times, including 24, 48 and
72 h. The WRF QPF has a similar precipitation pattern to that
estimated by rain gauges, but overestimates the averaged wa-
tershed precipitation, and the longer the WRF QPF lead time,
the higher the precipitation overestimation. Since the WRF
QPF has systematic bias compared with rain gauge precipi-
tation, a post-processing method is proposed to post-process
the WRF QPF products, which improves the flood forecast-
ing capability. The Liuxihe model is set up with freely down-
loaded terrain property. The model parameters were previ-
ously optimized with rain gauge observed precipitation, and
re-optimized with the WRF QPF. With model parameter re-
optimization, the model’s performance improved. Model pa-
rameters should be optimized with QPF, not the rain gauge
precipitation. Flood forecasting products produced by cou-
pling the Liuxihe model with the WRF QPF provide a good
reference for large watershed flood warning due to their long
lead time and rational results.

2 Study area and data

2.1 Study area

The Liujiang River basin (LRB) is selected as the studied
area, which is the largest first-order tributary of the Pearl
River with a drainage area of 58 270 km2 (Chen et al., 2017).
LRB is in the monsoon area with heavy storms that induced
severe flooding in the watershed and caused huge flood dam-
ages in the past centuries. Figure 1 is a sketch map of the
LRB.

2.2 Rain gauge precipitation and river flow discharge

Precipitation of 68 rain gauges within the watershed in 2011,
2012 and 2013 was collected and used in this study to com-
pare with the WRF QPF. Precipitation data are at 1 h inter-
vals. River discharge near the watershed outlet is collected
also for this same period. As this study focuses on water-
shed flood forecasting, so only the precipitation and river
discharge during the flood events are prepared. There is one
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Figure 1. Sketch map of the Liujiang River basin (Chen et al., 2017).

flood event in each year. The flood events are numbered as
flood event no. 2011, flood event no. 2012 and flood event
no. 2013, respectively.

3 WRF QPFs and their post-processing

3.1 WRF model

All simulations for this study were conducted with the
Advanced Research WRF (WRF-ARW) model version 3.4
(Skamarock et al., 2008). The WRF-ARW model is 3-D,
non-hydrostatic, and fully compressible, and has the terrain-
following sigma coordinate system. The model is consid-
ered the next generation’s medium-range weather forecast-
ing model, and can simulate different weather processes from
cloud scale to synoptic scale, especially at a horizontal res-
olution of 1–10 km. The model also integrates the advanced
numerical methods and data assimilation techniques, a vari-
ety of physical process schemes, and multiple nested meth-
ods and the capability of being used in different geographical
locations. The WRF-ARW model satisfies the needs of sci-
entific research and practical applications for this study.

Prior studies have been shown in quantitative precipitation
forecasting by using the WRF-ARW model. For instance,
Pennelly et al. (2014) employed the WRF model to pre-
dict three precipitation events of Alberta, Canada, and com-
pared the precipitation with the 48 h leading time predicted

by the model with rain gauges. The results showed that Kain–
Fritsch cumulus parameterization overestimated the value
of precipitation invariably. Eiserloh and Chiao (2015) used
WRF-ARW with data assimilation to investigate an atmo-
spheric river event over northern California. Maussion et
al. (2011) compared the capability of the WRF model in re-
trieving monthly precipitation and snowfall at three differ-
ent spatial resolutions, including the 30, 10 and 2 km do-
mains over Tibet. Their results showed that the model was
able to recapture monthly precipitation and snowfall. Pan et
al. (2012) used two WRF simulation groups between pre-
process and post-process in the Heihe River basin, and com-
pared and analyzed the mean bias error, root mean square
error and correlation coefficient of the two WRF groups.
Huang et al. (2011) found that variations in the microphysi-
cal process parameterization schemes had much more influ-
ence on precipitation than that of cumulus parameterization
schemes, especially for a torrential rain attributed to large-
scale forcing that mainly resulted from stratus clouds. Ku-
mar et al. (2001) used the WRF model to study a heavy
rain in 2005; their results showed that the WRF model could
reproduce the storm event and its dynamical and thermo-
dynamical characteristics. Hong and Lee (2009) conducted
a triply nested WRF simulation for convective initiation of
a thunderstorm. Givati et al. (2012) predicted the hiemal
precipitation events of 2008 and 2009 based on the WRF
model in the upstream of the Jordan River, and coupled
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Figure 2. Precipitation pattern comparison of two precipitation products (2011). (a) is the average precipitation of rain gauges, (b) is the
average precipitation of WRF with 24 h lead time, (c) is the average precipitation of WRF with 48 h lead time, and (d) is the average
precipitation of WRF with 72 h lead time.

the WRF model with hydrological model HYMKE to sim-
ulate the velocity and discharge of the Jordan River. Sensi-
tivity experiments of WRF microphysical schemes by Niu
and Yan (2007) have shown the adequate performance of
precipitation predicted associated with region, center loca-
tion and rainfall intensity. Xu et al. (2007) compared the
hiemal continuous precipitation process predicted with the
estival results by the WRF model; the results showed that the
KF scheme was better than the BM scheme in summer. Hu
et al. (2008) found that the parameterization scheme of the
WRF model was related to the model resolution, and the pa-
rameterization scheme should be selected by the resolution
of the WRF model.

3.2 Configuration of WRF for LRB

The WRF-ARW was applied to the LRB following the con-
figurations by Li et al. (2015). More information about the
LBR can be found in Li et al. (2015) and Chen et al. (2017).
The model domain is centered at 23.8◦ N, 109.2◦W with
the Lambert conformal projection. The vertical structure in-
cludes 28 levels, with the focus on the lower levels of the
troposphere. The initial and time-dependent lateral bound-
ary conditions are supplied from NCEP Global Forecast Sys-
tem (GFS) 3-hourly global analysis at 0.5◦ horizontal reso-
lution. The model domain has a 20 km grid resolution. The

single-moment 3-class microphysics (WSM3) parameteriza-
tion (Hong and Lim, 2006) is adopted for this study. Kain–
Fritsch cumulus parameterization (Kain, 2004) as well as
the YSU boundary layer microphysics scheme (Hong and
Lim, 2006) are used. Other physics schemes used include the
NOAH scheme for the land surface physics (Ek et al., 2003),
the Goddard scheme for the shortwave radiation physics
(based on Chou and Suarez, 1994), and the Rapid Radiative
Transfer Model (RRTM) scheme for the longwave radiation
physics (Mlawer et al., 1997).

The spatial and temporal resolution of WRF is at
20 km× 20 km and 1 h, respectively. The entire Liujiang
River basin is covered by a total of 156 grid points of
the WRF model. The simulated QPF for flood events in
years 2011 to 2013 was produced with three different lead
times (i.e., 24, 48 and 72 h), respectively. Shown in Figs. 2–4
are the WRF QPF products in 3 different years.

3.3 Evaluation of WRF QPF and rain gauge
precipitation

Comparisons of WRF QPF and rain gauge precipitation are
performed. From the simulated results, as shown in Figs. 2–
4, it appears that the temporal precipitation pattern of both
products is similar, although there are some insignificant dif-
ferences. To make further comparison, the accumulated pre-
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Figure 3. Precipitation pattern comparison of two precipitation products (2012). (a) is the average precipitation of rain gauges, (b) is the
average precipitation of WRF with 24 h lead time, (c) is the average precipitation of WRF with 48 h lead time, and (d) is the average
precipitation of WRF with 72 h lead time.

cipitation of the three flood events averaged over the water-
shed is calculated and listed in Table 1.

As summarized in Table 1, it could be found that the WRF
QPF accumulated precipitation has obvious bias with rain
gauge accumulated precipitation. For all three flood events,
the WRF QPF accumulated precipitation is higher than that
measured by rain gauges. In other words, the WRF QPF
overestimates the precipitation. For flood event no. 2011, the
overestimated watershed averaged precipitations of the WRF
QPF with lead times of 24, 48 and 72 h are 23, 32 and 55 %,
respectively. For the flood event no. 2012, they are 16, 37 and
71 %, respectively. They are 50, 73 and 95 %, respectively,
from the event no. 2013. The results suggest that the longer
the WRF QPF lead time, the higher the chance of overesti-
mation.

3.4 WRF QPF statistical calibrations

From the simulated results (cf. Figs. 2–4 and Table 1), the
WRF QPF has significant bias compared to rain gauge pre-
cipitation. Assuming the rain gauge precipitation is correct,
the WRF QPF needs to be further calibrated. In order to
do so, the WRF QPF is further post-processed based on the
rain gauge precipitation to correct the systematic error of the
WRF QPF. The principle of WRF QPF statistical calibrations
proposed in this study is to keep the areal averaged event

Table 1. Precipitation comparison of two products.

Flood Precipitation Average Relative
event products precipitation bias
no. (mm) %

2011

rain gauges 0.22
WRF/24 h 0.27 23
WRF/48 h 0.29 32
WRF/72 h 0.34 55

2012

rain gauges 0.38
WRF/24 h 0.44 16
WRF/48 h 0.52 37
WRF/72 h 0.65 71

2013

rain gauges 0.22
WRF/24 h 0.33 50
WRF/48 h 0.38 73
WRF/72 h 0.43 95

accumulated precipitation from both model and rain gauge
products equivalent. In other words, the statistical approach
is to nudge the WRF QPF precipitation to rain gauge results.

Based on this principle, the WRF QPF post-processing
procedure is summarized as follows.
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Figure 4. Precipitation pattern comparison of two precipitation products (2013). (a) is the average precipitation of rain gauges, (b) is the
average precipitation of WRF with 24 h lead time, (c) is the average precipitation of WRF with 48 h lead time, and (d) is the average
precipitation of WRF with 72 h lead time.

1. Calculate the areal average precipitation of the WRF
QPF for each flood event over the watershed as the fol-
lowing equation:

P WRF =

N∑
i=1

PiFi

N
, (1)

where P WRF is the areal average precipitation of the
WRF QPF of one flood event, Pi is the precipitation
on WRF grid i, Fi is the surface area of WRF grid i di-
vided by the whole watershed drainage area, and N is
the total number of WRF grids.

2. Calculate the areal average precipitation of the rain
gauges with the following equation.

P 2 =

M∑
j=1

Pj

M
, (2)

where P 2 is the areal average precipitation of the rain
gauge network, Pj is the precipitation observed by the
j th rain gauge, and M is the total number of rain gauges.

3. The precipitation of every WRF QPF grid then could be
revised with the following equation.

P ′i = Pi

P 2

P WRF
, (3)

where P ′i is the revised precipitation of the ith WRF
grid.

With the above WRF QPF statistical calibration methods, the
WRF QPF of flood events no. 2011, no. 2012 and no. 2013
are post-processed, and will be used to couple with the Liux-
ihe model for flood simulations.

4 Hydrological model

4.1 Liuxihe model

The Liuxihe model is a physically based fully distributed hy-
drological model proposed mainly for watershed flood fore-
casting (Chen, 2009; Chen et al., 2011), and has been used in
a few watersheds for flood forecasting (Chen, 2009; Chen
et al., 2011, 2013, 2016; Liao et al., 2012a, b; Xu et al.,
2012a, b). In the Liuxihe model, runoff components are cal-
culated at grid scale, runoff routes at both grid and water-
shed scale. Runoff routing is divided into hillslope routing
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Figure 5. Liuxihe model structure of the LRB (200 m× 200 m res-
olution, Chen et al., 2017).

and river channel routing by using different computation al-
gorithms. The Liuxihe model proposed an automatic param-
eter optimization method using the PSO algorithm (Chen et
al., 2016), which largely improves the model’s performance
in watershed flood forecasting. Now the Liuxihe model is
deployed on a supercomputer system with parallel computa-
tion techniques (Chen et al., 2013) that largely facilitates the
model parameter optimization of the Liuxihe model.

Chen et al. (2017) set up the Liuxihe model in the LRB
with freely downloaded terrain property data from the web-
site at a spatial resolution of 200 m× 200 m, and optimized
model parameters with observed hydrological data. The
model was validated by observed flood event data, and the
model performance was found to be rational and could be
used for real-time flood forecasting. The model only uses rain
gauge precipitation, so its flood forecasting lead time is lim-
ited. In this study, the Liuxihe model was set up in the LRB
and the optimized model parameters were used in this study
as the first attempt. Figure 5 shows the model structure.

4.2 Liuxihe model parameter optimization

While the model parameter optimization by Chen et
al. (2017) is done by using the rain gauge precipitation, this
study uses the WRF QPF as the precipitation input. So the
parameters of the Liuxihe model that were set up in the LRB
may not be appropriate for coupling the WRF QPF. For this
reason, considering the Liuxihe model is a physically based
distributed hydrological model, the parameters were opti-
mized again by using the WRF QPF flood event no. 2011.
Hence, the WRF QPF is the post-processed one, not the
original one. Results of parameter optimization are shown
in Fig. 6. Among them, (a) is the objective function evolu-
tion result, (b) is the parameter evolution result, and (c) is the
simulated flood process by using the optimized model pa-

Figure 6. Parameter optimization results of the Liuxihe model for
the LRB with WRF QPF.

rameters. To compare, the simulated flood process of flood
event no. 2011 was also drawn in Fig. 6c.

From the result of Fig. 6c, it may be seen that the opti-
mized model parameters with the WRF QPF improved the
flood simulation when compared to the corresponding flood
simulation based on gauge precipitation. This means param-
eter optimization with the WRF QPF is necessary.

4.3 Coupling the WRF QPF with the Liuxihe model for
LRB flood forecasting

When the Liuxihe model set up for LRB flood forecast-
ing (Chen et al., 2017) was employed to couple with
the WRF QPF, the model spatial resolution remained
200 m× 200 m. As the spatial resolution of the WRF QPF
is 20 km× 20 km, the WRF QPF was downscaled to the res-
olution of 200 m× 200 m by using the nearest downscaling
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Figure 7. Coupled flood simulation results with the original model
parameters (2011). (a) is the simulated result with 24 h lead time,
(b) is the simulated result with 48 h lead time, and (c) is the simu-
lated result with 48 h lead time.

method, the same spatial resolution of the flood forecasting
model.

5 Results and discussions

5.1 Effects of WRF post-processing

The original WRF QPF and the post-processed QPF were
used to couple with the Liuxihe model. In this simula-
tion, the original model parameters that were optimized
with the rain gauge precipitation were employed, not the
re-optimized model parameters. The simulated results are
shown in Figs. 7–9.

From the above results, it could be seen that the simu-
lated flood discharges with the original WRF QPF are much

Figure 8. Coupled flood simulation results with the original model
parameters (2012). (a) is the simulated result with 24 h lead time,
(b) is the simulated result with 48 h lead time, and (c) is the simu-
lated result with 48 h lead time.

lower than the observed ones. But with the post-processed
WRF QPF used, the simulated flood discharge increased and
became much closer to the observation. This implies that
the flood forecasting capability has been improved by post-
processing of the WRF QPF. To further compare the three
results, five evaluation indices, including the Nash–Sutcliffe
coefficient (C), correlation coefficient (R), process relative
error (P ), peak flow relative error (E) and water balance co-
efficient (W ), were calculated and listed in Table 2.

From the results of Table 2, it has been found that all five
evaluation indices have been improved by coupling the post-
processed WRF QPF. For example, for flood event no. 2011
with 24 h lead time, the Nash–Sutcliffe coefficient/C, corre-
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Figure 9. Coupled flood simulation results with the original model
parameters (2013). (a) is the simulated result with 24 h lead time,
(b) is the simulated result with 48 h lead time, and (c) is the simu-
lated result with 48 h lead time.

lation coefficient/R, process relative error/P , peak flow rel-
ative error/E and coefficient of water balance/W with the
original WRF QPF are 0.65, 0.88, 35, 14 % and 1.44, respec-
tively, but those with the post-processed WRF QPF are 0.75,
0.93, 23, 8 % and 1.15, respectively. For flood event no. 2012
with 48 h lead time, the above five evaluation indices with
the original WRF QPF are 0.63, 0.75, 48, 12 % and 1.43, re-
spectively, and are 0.75, 0.84, 26, 8 % and 1.32, respectively,
with the post-processed WRF QPF. For flood event no. 2013
with 72 h lead time, the above five evaluation indices with
the original WRF QPF are 0.44, 0.75, 129, 45 % and 1.66,
respectively, and are 0.55, 0.82, 98, 23 % and 1.25, respec-
tively, with the post-processed WRF QPF. It is obvious that
with the post-processed WRF QPF, the evaluation indices are
improved substantially. These results show that WRF QPF

Figure 10. Coupled flood simulation results with the re-optimized
model parameters (2012). (a) is the simulated result with 24 h lead
time, (b) is the simulated result with 48 h lead time, and (c) is the
simulated result with 48 h lead time.

post-processing could improve the flood forecasting capabil-
ity because the WRF QPF is closer to the observed precipita-
tion after post-processing. So it should be practiced for real-
time flood forecasting.

5.2 Results comparison for different model parameters

The model parameters optimized with rain gauge precipita-
tion and the WRF QPF are different, so different parameter
values will result in different model performances. To ana-
lyze this effect, the flood events no. 2012 and no. 2013 with
two different sets of model parameter values are simulated,
and are shown in Figs. 10 and 11, respectively. Only the post-
processed WRF QPF is coupled in this simulation.
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Figure 11. Coupled flood simulation results with re-optimized
model parameters (2013). (a) is the simulated result with 24 h lead
time, (b) is the simulated result with 48 h lead time, and (c) is the
simulated result with 48 h lead time.

From the above figures it may be that the simulated flood
results with re-optimized model parameters are better than
those simulated with the original model parameters. The sim-
ulated flood discharge with the re-optimized model param-
eters matches the observed discharge. To further compare
the two results, five evaluation indices, including the Nash–
Sutcliffe coefficient (C), correlation coefficient (R), process
relative error (P ), peak flow relative error (E) and water bal-
ance coefficient (W ), are calculated and listed in Table 3.

From the results of Table 3, it is found that the results of
flood simulation based on the re-optimized model parame-
ters have better evaluation indices. All evaluation indices for
those based on re-optimized model parameters are improved.
For example, for flood event no. 2012 with 24 h lead time, the
Nash–Sutcliffe coefficient/C, correlation coefficient/R, pro-

Figure 12. Simulated results with different lead times. (a) is the
flood simulation results of flood event no. 2012; (b) is the flood
simulation results of flood event no. 2013.

cess relative error/P , peak flow relative error/E and coeffi-
cient of water balance/W with the original model parame-
ters are 0.58, 0.82, 35, 12 % and 1.08, respectively, but those
with the re-optimized model parameters are 0.74, 0.86, 28,
8 % and 0.95, respectively. For flood event no. 2013 with
48 h lead time, the five indices with the original model pa-
rameters are 0.62, 0.86, 22, 13 % and 1.24, respectively,
and are 0.68, 0.89, 18, 9 % and 1.06, respectively, for those
with re-optimized model parameters. So it could be said that
in coupling the WRF QPF with a distributed hydrological
model, the model parameters need to be re-optimized with
the WRF QPF. This finding implies that the precipitation pat-
tern has an obvious impact on model parameters. It should be
considered, and model parameter optimization is a rational
way to consider this effect.

5.3 Flood simulation accuracy with different lead times

To compare the model performance with different lead times,
the flood events with three different lead times are simu-
lated and shown in Fig. 12. The model parameters are the
re-optimized ones, and the QPF is the post-processed QPF.

From the results of Fig. 12, it could be seen that the flood
simulation result gets worse as the lead time increases; i.e.,
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Table 2. Evaluation indices of simulated flood events with the post-processed WRF QPF.

Rain type Statistical index Flood event Flood event Flood event
no. 2011 no. 2012 no. 2013

WRF/24 h Nash–Sutcliffe coefficient/C 0.65 0.66 0.65
Correlation coefficient/R 0.88 0.73 0.83
Process relative error/P 0.35 0.57 0.19
Peak flow relative error/E 0.14 0.18 0.25
The coefficient of water balance/W 1.44 1.35 1.38

WRF/24 h after Nash–Sutcliffe coefficient/C 0.75 0.75 0.75
revised Correlation coefficient/R 0.93 0.82 0.85

Process relative error/P 0.23 0.35 0.11
Peak flow relative error/E 0.08 0.12 0.16
The coefficient of water balance/W 1.15 1.08 1.12

WRF/48 h Nash–Sutcliffe coefficient/C 0.58 0.63 0.5
Correlation coefficient/R 0.78 0.75 0.8
Process relative error/P 0.52 0.48 0.34
Peak flow relative error/E 0.41 0.12 0.24
The coefficient of water balance/W 1.52 1.43 1.51

WRF/48 h after Nash–Sutcliffe coefficient/C 0.64 0.75 0.62
revised Correlation coefficient/R 0.82 0.84 0.86

Process relative error/P 0.45 0.26 0.22
Peak flow relative error/E 0.34 0.08 0.13
The coefficient of water balance/W 1.22 1.32 1.24

WRF/72 h Nash–Sutcliffe coefficient/C 0.45 0.48 0.44
Correlation coefficient/R 0.68 0.36 0.75
Process relative error/P 0.64 0.62 1.29
Peak flow relative error/E 0.31 0.35 0.45
The coefficient of water balance/W 1.67 1.54 1.66

WRF/72 h after Nash–Sutcliffe coefficient/C 0.52 0.58 0.55
revised Correlation coefficient/R 0.75 0.45 0.82

Process relative error/P 0.53 0.52 0.98
Peak flow relative error/E 0.11 0.22 0.23
The coefficient of water balance/W 1.15 1.14 1.25

the model performance with 24 h lead time is better than that
with 48 h lead time, and the model performance with 48 h
lead time is better than that with 72 h lead time. The simu-
lated hydrological process with 24 h lead time is very simi-
lar to that simulated with rain gauge precipitation. To further
compare the results, five evaluation indices, including the
Nash–Sutcliffe coefficient (C), correlation coefficient (R),
process relative error (P ), peak flow relative error (E) and
water balance coefficient (W ), were calculated and listed in
Table 4.

From the results of Table 4, it is found that the simu-
lated flood events with 24 h lead time have the best eval-
uation indices, and are very close to those simulated with
rain gauge precipitation. For flood event no. 2012, the Nash–
Sutcliffe coefficient/C, correlation coefficient/R, process rel-
ative error/P , peak flow relative error/E and coefficient of
water balance/W with the rain gauge are 0.82, 0.89, 20,
5 % and 0.8, respectively, while those with 24 h lead time

are 0.74, 0.86, 28, 8 % and 0.95, respectively, those with
48 h lead time are 0.63, 0.84, 48, 12 % and 1.32, respec-
tively, and are 0.56, 0.56, 56, 18 % and 1.54, respectively,
for 72 h lead time. For flood event no. 2013, the Nash–
Sutcliffe coefficient/C, correlation coefficient/R, process rel-
ative error/P , peak flow relative error/E and coefficient of
water balance/W with the rain gauge are 0.95, 0.92, 8,
6 % and 1.08, respectively, while those with 24 h lead time
are 0.87, 0.87, 9, 12 % and 1.02, respectively, those with 48 h
lead time are 0.62, 0.86, 22, 13 % and 1.24, respectively, and
are 0.61, 0.87, 75, 17 % and 1.66, respectively, for 72 h lead
time. This finding means that the current WRF QPF capabil-
ity is lead-time-dependent, and with the increasing lead time,
the practical value of the WRF QPF gets lower.
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Table 3. Evaluation indices of simulated flood events with different model parameters.

Parameter type Statistical index Flood event Flood event Flood event
no. 2011 no. 2012 no. 2013

Coupling model Nash–Sutcliffe coefficient/C 0.75 0.58 0.75
24 h/originally Correlation coefficient/R 0.93 0.82 0.85
optimized model Process relative error/P 0.23 0.35 0.11
parameters Peak flow relative error/E 0.08 0.12 0.16

The coefficient of water balance/W 1.15 1.08 1.12

Coupling model Nash–Sutcliffe coefficient/C 0.78 0.74 0.87
24 h/re-optimized Correlation coefficient/R 0.95 0.86 0.87
model parameters Process relative error/P 0.19 0.28 0.09

Peak flow relative error/E 0.06 0.08 0.12
The coefficient of water balance/W 1.03 0.95 1.02

Coupling model Nash–Sutcliffe coefficient/C 0.64 0.75 0.62
48 h/originally Correlation coefficient/R 0.82 0.84 0.86
optimized model Process relative error/P 0.45 0.26 0.22
parameters Peak flow relative error/E 0.34 0.08 0.13

The coefficient of water balance/W 1.22 1.32 1.24

Coupling model Nash–Sutcliffe coefficient/C 0.72 0.75 0.68
48 h/re-optimized Correlation coefficient/R 0.86 0.87 0.89
model parameters Process relative error/P 0.32 0.22 0.18

Peak flow relative error/E 0.21 0.06 0.09
The coefficient of water balance/W 1.05 1.12 1.06

Coupling model Nash–Sutcliffe coefficient/C 0.52 0.75 0.55
72 h/originally Correlation coefficient/R 0.75 0.45 0.82
optimized model Process relative error/P 0.53 0.52 0.98
parameters Peak flow relative error/E 0.11 0.22 0.23

The coefficient of water balance/W 1.15 1.14 1.25

Coupling model Nash–Sutcliffe coefficient/C 0.62 0.72 0.61
72 h/re-optimized Correlation coefficient/R 0.78 0.56 0.87
model parameters Process relative error/P 0.38 0.32 0.75

Peak flow relative error/E 0.09 0.18 0.17
The coefficient of water balance/W 1.08 1.02 1.05

6 Conclusion

In this study, the WRF QPF was coupled with a distributed
hydrological model – the Liuxihe model – for large water-
shed flood forecasting, and three lead times of WRF QPF
products, including 24, 48 and 72 h, are tested. The WRF
QPF post-processing method is proposed and tested, model
parameters are re-optimized by using the post-processed
WRF QPF, and model performances are compared among
various conditions. Based on the results of this study, the fol-
lowing conclusions could be drawn.

1. The quantitative precipitation forecasting produced by
the WRF model has a similar pattern to that estimated
by rain gauges temporally, but overestimated the aver-
aged watershed precipitation for the event accumulated
total precipitation. The longer the WRF QPF lead time,
the higher the precipitation overestimation. For flood
event no. 2011, the overestimated watershed averaged

precipitations of the WRF QPF with lead times of 24,
48 and 72 h are 23, 32 and 55 %, respectively. For flood
event no. 2012, these are 16, 37 and 71 %, respectively,
while for flood event no. 2013, these are 50, 73 and
95 %, respectively.

2. The WRF QPF has systematic bias compared with
rain gauge precipitation, and this bias could be re-
duced via post-processing. The principle used in this
study for WRF QPF post-processing is effective and
could improve the flood forecasting capability. For flood
event no. 2011 with 24 h lead time, the Nash–Sutcliffe
coefficient/C, correlation coefficient/R, process relative
error/P , peak flow relative error/E and coefficient of
water balance/W with the original WRF QPF are 0.65,
0.88, 35, 14 % and 1.44, respectively, but those with
the post-processed WRF QPF are 0.75, 0.93, 23, 8 %
and 1.15, respectively. For flood event no. 2012 with
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Table 4. Evaluation indices of the simulated flood event with different lead times.

Rain type Statistical index Flood event Flood event
no. 2012 no. 2013

Rain gauges Nash–Sutcliffe coefficient/C 0.82 0.95
Correlation coefficient/R 0.89 0.92
Process relative error/P 0.2 0.08
Peak flow relative error/E 0.05 0.06
The coefficient of water balance/W 0.8 1.08

WRF/24 h Nash–Sutcliffe coefficient/C 0.74 0.87
Correlation coefficient/R 0.86 0.87
Process relative error/P 0.28 0.09
Peak flow relative error/E 0.08 0.12
The coefficient of water balance/W 0.95 1.02

WRF/48 h Nash–Sutcliffe coefficient/C 0.63 0.62
Correlation coefficient/R 0.84 0.86
Process relative error/P 0.48 0.22
Peak flow relative error/E 0.12 0.13
The coefficient of water balance/W 1.32 1.24

WRF/72 h Nash–Sutcliffe coefficient/C 0.56 0.61
Correlation coefficient/R 0.56 0.87
Process relative error/P 0.56 0.75
Peak flow relative error/E 0.18 0.17
The coefficient of water balance/W 1.54 1.66

48 h lead time, the above five evaluation indices with the
original WRF QPF are 0.63, 0.75, 48, 12 % and 1.43,
respectively, and are 0.75, 0.84, 26, 8 % and 1.32, re-
spectively, with the post-processed WRF QPF. For flood
event no. 2013 with 72 h lead time, the above five evalu-
ation indices with the original WRF QPF are 0.44, 0.75,
129, 45 % and 1.66, respectively, and are 0.55, 0.82,
98, 23 % and 1.25, respectively, with the post-processed
WRF QPF.

3. Hydrological model parameters optimized with the rain
gauge precipitation need to be re-optimized using the
post-processed WRF QPF; this improves the model per-
formance significantly. That is, in coupling the dis-
tributed hydrological model with QPF for flood fore-
casting, the model parameters should be optimized with
the QPF produced by WRF. For flood event no. 2012
with a 24 h lead time, the Nash–Sutcliffe coefficient/C,
correlation coefficient/R, process relative error/P , peak
flow relative error/E and coefficient of water balance/W
with the original model parameters are 0.58, 0.82, 35,
12 % and 1.08, respectively, but those with the re-
optimized model parameters are 0.74, 0.86, 28, 8 %
and 0.95, respectively. For flood event no. 2013 with a
48 h lead time, the five indices with the original model
parameters are 0.62, 0.86, 22, 13 % and 1.24, respec-
tively, and are 0.68, 0.89, 18, 9 % and 1.06, respectively,
for those with re-optimized model parameters.

4. The simulated floods by coupling WRF QPF with the
distributed hydrological model are rational and could
benefit the flood management communities due to their
longer lead times for flood warning. They provide a
good reference for large watershed flood warning. But
with the lead time getting longer, the flood forecasting
accuracy is getting lower. For flood event no. 2012, the
Nash–Sutcliffe coefficient/C, correlation coefficient/R,
process relative error/P , peak flow relative error/E and
coefficient of water balance/W with the rain gauge
are 0.82, 0.89, 20, 5 % and 0.8, respectively, while those
with a 24 h lead time are 0.74, 0.86, 28, 8 % and 0.95,
respectively, those with a 48 h lead time are 0.63, 0.84,
48, 12 % and 1.32, respectively, and are 0.56, 0.56, 56,
18 % and 1.54, respectively, for a 72 h lead time. For
flood event no. 2013, the Nash–Sutcliffe coefficient/C,
correlation coefficient/R, process relative error/P , peak
flow relative error/E and coefficient of water balance/W
with the rain gauge are 0.95, 0.92, 8, 6 % and 1.08, re-
spectively, while those with a 24 h lead time are 0.87,
0.87, 9, 12 % and 1.02, respectively, those with a 48 h
lead time are 0.62, 0.86, 22, 13 %, and 1.24, respec-
tively, and are 0.61, 0.87, 75, 17 % and 1.66, respec-
tively, for a 72 h lead time.
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7 Data availability

The rain gauge precipitation and river flow discharge data
were provided by the Bureau of Hydrology, Pearl River Wa-
ter Resources Commission, China, exclusively used for this
study. The WRF QPF results were provided by Yuan Li, and
have been published and cited in this paper (Li et al., 2015).
The Liuxihe model used in this study is provided by Yangbo
Chen, and has been published and cited in this paper (Chen
et al., 2017).
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