Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 10
Hydrol. Earth Syst. Sci., 20, 4061–4078, 2016
https://doi.org/10.5194/hess-20-4061-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 4061–4078, 2016
https://doi.org/10.5194/hess-20-4061-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Oct 2016

Research article | 07 Oct 2016

Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory

Carlotta Scudeler et al.

Viewed

Total article views: 1,584 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
925 605 54 1,584 53 65
  • HTML: 925
  • PDF: 605
  • XML: 54
  • Total: 1,584
  • BibTeX: 53
  • EndNote: 65
Views and downloads (calculated since 25 May 2016)
Cumulative views and downloads (calculated since 25 May 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 21 Sep 2020
Publications Copernicus
Download
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
Very few studies have applied a physically based hydrological model with integrated and...
Citation