Articles | Volume 20, issue 10
https://doi.org/10.5194/hess-20-3987-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-3987-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland
Raghavendra B. Jana
CORRESPONDING AUTHOR
Water Desalination and Reuse Centre, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Ali Ershadi
Water Desalination and Reuse Centre, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Matthew F. McCabe
Water Desalination and Reuse Centre, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science
and Technology, Thuwal 23955, Saudi Arabia
Related authors
No articles found.
P. Rouault, D. Courault, G. Pouget, F. Flamain, R. Lopez-Lozano, C. Doussan, M. Debolini, and M. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1531–1536, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1531-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1531-2023, 2023
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020, https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
Short summary
The agricultural sector in Saudi Arabia has expanded rapidly over the last few decades, supported by non-renewable groundwater abstraction. This study describes a novel data–model fusion approach to compile national-scale groundwater abstractions and demonstrates its use over 5000 individual center-pivot fields. This method will allow both farmers and water management agencies to make informed water accounting decisions across multiple spatial and temporal scales.
K. Johansen, M. J. L. Morton, Y. Malbeteau, B. Aragon, S. Al-Mashharawi, M. Ziliani, Y. Angel, G. Fiene, S. Negrao, M. A. A. Mousa, M. A. Tester, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 407–411, https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019, 2019
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017, https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
Short summary
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity in an agriculture field irrigated with a drip irrigation system. Electromagnetic model parameters and uncertainty were estimated using adaptive Bayesian Markov chain Monte Carlo (MCMC). Application of the MCMC-based inversion to the synthetic and field measurements demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil.
D. Turner, A. Lucieer, M. McCabe, S. Parkes, and I. Clarke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 379–384, https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017, 2017
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Stephen D. Parkes, Matthew F. McCabe, Alan D. Griffiths, Lixin Wang, Scott Chambers, Ali Ershadi, Alastair G. Williams, Josiah Strauss, and Adrian Element
Hydrol. Earth Syst. Sci., 21, 533–548, https://doi.org/10.5194/hess-21-533-2017, https://doi.org/10.5194/hess-21-533-2017, 2017
Short summary
Short summary
Determining atmospheric moisture sources is required for understanding the water cycle. The role of land surface fluxes is a particular source of uncertainty for moisture budgets. Water vapour isotopes have the potential to improve constraints on moisture sources. In this work relationships between water vapour isotopes and land–atmosphere exchange are studied. Results show that land surface evaporative fluxes play a minor role in the daytime water and isotope budgets in semi-arid environments.
Jason P. Evans, Xianhong Meng, and Matthew F. McCabe
Hydrol. Earth Syst. Sci., 21, 409–422, https://doi.org/10.5194/hess-21-409-2017, https://doi.org/10.5194/hess-21-409-2017, 2017
Short summary
Short summary
This work demonstrates that changes in surface albedo and vegetation, caused by the millennium drought in south-east Australia, affected the atmosphere in a way that decreased precipitation further. This land–surface feedback increased the severity of the drought by 10 %. This suggests that climate models need to simulate changes in surface characteristics (other than soil moisture) in response to a developing drought if they are to capture this kind of multi-year drought.
Oliver López, Rasmus Houborg, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 21, 323–343, https://doi.org/10.5194/hess-21-323-2017, https://doi.org/10.5194/hess-21-323-2017, 2017
Short summary
Short summary
The study evaluated the spatial and temporal consistency of satellite-based hydrological products based on the water budget equation, including three global evaporation products. The products were spatially matched using spherical harmonics analysis. The results highlighted the difficulty in obtaining agreement between independent satellite products, even over regions with simple water budgets. However, imposing a time lag on water storage data improved results considerably.
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
Short summary
The WACMOS-ET project aims to advance the development of land evaporation estimates on global and regional scales. Evaluation of current evaporation data sets on the global scale showed that they manifest large dissimilarities during conditions of water stress and drought and deficiencies in the way evaporation is partitioned into several components. Different models perform better under different conditions, highlighting the potential for considering biome- or climate-specific model ensembles.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary
Short summary
In an effort to develop a global terrestrial evaporation product, four models were forced using both a tower and grid-based data set. Comparisons against flux-tower observations from different biome and land cover types show considerable inter-model variability and sensitivity to forcing type. Results suggest that no single model is able to capture expected flux patterns and response. It is suggested that a multi-model ensemble is likely to provide a more stable long-term flux estimate.
H. Ajami, J. P. Evans, M. F. McCabe, and S. Stisen
Hydrol. Earth Syst. Sci., 18, 5169–5179, https://doi.org/10.5194/hess-18-5169-2014, https://doi.org/10.5194/hess-18-5169-2014, 2014
Short summary
Short summary
A new hybrid approach was developed to reduce the computational burden of the spin-up procedure by using a combination of model simulations and an empirical depth-to-water table function. Results illustrate that the hybrid approach reduced the spin-up period required for an integrated groundwater--surface water--land surface model (ParFlow.CLM) by up to 50%. The methodology is applicable to other coupled or integrated modeling frameworks when initialization from an equilibrium state is required.
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
A. D. Griffiths, S. D. Parkes, S. D. Chambers, M. F. McCabe, and A. G. Williams
Atmos. Meas. Tech., 6, 207–218, https://doi.org/10.5194/amt-6-207-2013, https://doi.org/10.5194/amt-6-207-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Stochastic approaches
Revisiting the global hydrological cycle: is it intensifying?
Detection and attribution of flood trends in Mediterranean basins
How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations
Investigation of hydrological time series using copulas for detecting catchment characteristics and anthropogenic impacts
Towards observation-based gridded runoff estimates for Europe
Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps
Detection of global runoff changes: results from observations and CMIP5 experiments
Rainfall statistics changes in Sicily
Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions
How extreme is extreme? An assessment of daily rainfall distribution tails
Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling
Climate model bias correction and the role of timescales
Streamflow trends in Europe: evidence from a dataset of near-natural catchments
Demetris Koutsoyiannis
Hydrol. Earth Syst. Sci., 24, 3899–3932, https://doi.org/10.5194/hess-24-3899-2020, https://doi.org/10.5194/hess-24-3899-2020, 2020
Short summary
Short summary
We overview and retrieve a great amount of global hydroclimatic data sets. We improve the quantification of the global hydrological cycle, its variability and its uncertainties through the surge of newly available data sets. We test (but do not confirm) established climatological hypotheses, according to which the hydrological cycle should be intensifying due to global warming. We outline a stochastic view of hydroclimate, which provides a reliable means of dealing with its variability.
Yves Tramblay, Louise Mimeau, Luc Neppel, Freddy Vinet, and Eric Sauquet
Hydrol. Earth Syst. Sci., 23, 4419–4431, https://doi.org/10.5194/hess-23-4419-2019, https://doi.org/10.5194/hess-23-4419-2019, 2019
Short summary
Short summary
In the present study the flood trends have been assessed for a large sample of 171 basins located in southern France, which has a Mediterranean climate. Results show that, despite the increase in rainfall intensity previously observed in this area, there is no general increase in flood magnitude. Instead, a reduction in the annual number of floods is found, linked to a decrease in soil moisture caused by the increase in temperature observed in recent decades.
Xiaoyong Sophie Zhang, Gnanathikkam E. Amirthanathan, Mohammed A. Bari, Richard M. Laugesen, Daehyok Shin, David M. Kent, Andrew M. MacDonald, Margot E. Turner, and Narendra K. Tuteja
Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, https://doi.org/10.5194/hess-20-3947-2016, 2016
Short summary
Short summary
The hydrologic reference stations website (www.bom.gov.au/water/hrs/), developed by the Australia Bureau of Meteorology, is a one-stop portal to access long-term and high-quality streamflow information for 222 stations across Australia. This study investigated the streamflow variability and inferred trends in water availability for those stations. The results present a systematic analysis of recent hydrological changes in Australian rivers, which will aid water management decision making.
Takayuki Sugimoto, András Bárdossy, Geoffrey G. S. Pegram, and Johannes Cullmann
Hydrol. Earth Syst. Sci., 20, 2705–2720, https://doi.org/10.5194/hess-20-2705-2016, https://doi.org/10.5194/hess-20-2705-2016, 2016
Short summary
Short summary
This paper is aims to detect the climate change impacts on the hydrological regime from the long-term discharge records. A new method for stochastic analysis using copulas, which has the advantage of scrutinizing the data independent of marginal, is suggested in this paper. Two measures are used in the copula domain: one focuses on the asymmetric characteristic of data and the other compares the distances between the copulas. These are calculated for 100 years of daily discharges and the results are discussed.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, https://doi.org/10.5194/hess-19-2859-2015, 2015
Short summary
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
R. Alkama, L. Marchand, A. Ribes, and B. Decharme
Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, https://doi.org/10.5194/hess-17-2967-2013, 2013
E. Arnone, D. Pumo, F. Viola, L. V. Noto, and G. La Loggia
Hydrol. Earth Syst. Sci., 17, 2449–2458, https://doi.org/10.5194/hess-17-2449-2013, https://doi.org/10.5194/hess-17-2449-2013, 2013
B. Li and M. Rodell
Hydrol. Earth Syst. Sci., 17, 1177–1188, https://doi.org/10.5194/hess-17-1177-2013, https://doi.org/10.5194/hess-17-1177-2013, 2013
S. M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos
Hydrol. Earth Syst. Sci., 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, https://doi.org/10.5194/hess-17-851-2013, 2013
A. K. Gain, W. W. Immerzeel, F. C. Sperna Weiland, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 15, 1537–1545, https://doi.org/10.5194/hess-15-1537-2011, https://doi.org/10.5194/hess-15-1537-2011, 2011
J. O. Haerter, S. Hagemann, C. Moseley, and C. Piani
Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, https://doi.org/10.5194/hess-15-1065-2011, 2011
K. Stahl, H. Hisdal, J. Hannaford, L. M. Tallaksen, H. A. J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar
Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, https://doi.org/10.5194/hess-14-2367-2010, 2010
Cited articles
Badgley, G., Fisher, J. B., Jimenez, C., Tu, K. P., and Vinukollu, R.: On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets, J. Hydrometeorol., 16, 1449–1455, 2015.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux Parameterization over Land Surfaces for Atmospheric Models, J. Appl. Meteorol., 30, 327–341, 1991.
Betts, A. K.: Understanding Hydrometeorology Using Global Models, B. Am. Meteor. Soc., 85, 1673–1688, 2004.
Bogena, H. R., Huisman, J. A., Baatz, R., Franssen, H.-J. H., and Vereecken, H.: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario, Water Resour. Res., 49, 5778–5791, 2013.
Brutsaert, W.: Hydrology: An Introduction, Cambridge, Cambridge University Press, 2005.
Brutsaert, W.: Evaporation into the atmosphere: theory, history and applications, Springer Science and Business Media, 2013.
Desilets, D., Zreda, M., and Ferre, T. P. A.: Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, W11505, https://doi.org/10.1029/2009WR008726, 2010.
Dirmeyer, P. A.: Vegetation stress as a feedback mechanism in midlatitude drought, J. Climate, 7, 1463–1483, 1994.
Elhag, M., Psilovikos, A., Manakos, I., and Perakis, K.: Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta, Water Resour. Manage., 25, 2731–2742, 2011.
Eltahir, E. A. B.: A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and observations, Water Resour. Res., 34, 765–776, 1998.
Entekhabi, D., Rodriguez-Iturbe, I., and Bras, R. L.: Variability in Large-Scale Water Balance with Land Surface-Atmosphere Interaction, J. Climate, 5, 798–813, 1992.
Ershadi, A., McCabe, M. F., Evans, J. P., Mariethoz, G., and Kavetski, D.: A Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction, Water Resour. Res., 49, 2343–2358, 2013a.
Ershadi, A., McCabe, M. F., Evans, J. P., and Walker, J. P.: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration, Remote Sens. Environ., 131, 51–62, 2013b.
Ershadi, A., McCabe, M., Evans, J., Chaney, N., and Wood, E.: Multi-site evaluation of terrestrial evaporation models using FLUXNET data, Agr. Forest Meteorol., 187, 46–61, 2014.
Ershadi, A., McCabe, M. F., Evans, J. P., and Wood, E. F.: Impact of model structure and parameterization on Penman–Monteith type evaporation models, J. Hydrol., 525, 521–535, 2015.
Findell, K. L., Gentine, P., Lintner, B. R., and Kerr, C.: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation, Nat. Geosci., 4, 434–439, 2011.
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A.: A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation, Bound.-Lay. Meteorol., 107, 1–48, 2003.
Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C.: Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068, 2007.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919, 2008.
Hanson, R. L.: Evapotranspiration and Droughts, edited by: Paulson, R. W., Chase, E. B., Roberts, R. S., and Moody, D. W., National Water Summary 1988–89 – Hydrologic Events and Floods and Droughts, US Geological Survey Water-Supply Paper, 99–104, 1991.
Hawdon, A., McJannet, D., and Wallace, J.: Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia, Water Resour. Res., 50, 5029–5043, 2014.
Held, I. M., Delworth, T. L., Lu, J., Findell, K. L., and Knutson, T. R.: Simulation of Sahel drought in the 20th and 21st centuries, P. Natl. Acad. Sci. USA, 102, 17891–17896, 2005.
Jana, R. B. and Mohanty, B. P.: A topography-based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing, Water Resour. Res., 48, W02519, https://doi.org/10.1029/2011WR011205, 2012.
Jana, R. B., Mohanty, B. P., and Springer, E. P.: Multiscale Bayesian neural networks for soil water content estimation, Water Resour. Res., 44, W08408, https://doi.org/10.1029/2008WR006879, 2008.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating land surface evaporation: A review of methods using remotely sensed surface temperture data, Surv. Geophys., 29, 421–469, 2008.
Kohli, M., Schron, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S.: Footprint characteristics revised for field-scalesoil moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51, 5772–5790, 2015.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C., Kanae, S., Kowalczyk, E., and Lawrence, D.: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140, 2004.
Koster, R. D., Sud, Y. C., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W., Chan, E., Verseghy, D., Cox, P., Davies, H., Kowalczyk, E., Gordon, C. T., Kanae, S., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Mitchell, K., Malyshev, S., McAvaney, B., Oki, T., Yamada, T., Pitman, A., Taylor, C. M., Vasic, R., and Xue, Y.: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview, J. Hydrometeorol., 7, 590–610, 2006.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J. H., Lee, W. S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J. M., Vitart, F., and Wood, E. F.: The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822, 2011.
Leclerc, M. Y. and Thurtell, G. W.: Footprint prediction of scalar fluxes using a Markovian analysis, Bound.-Lay. Meteorol., 52, 247–258, 1990.
Leuning, R.: The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows, Bound.-Lay. Meteorol., 123, 263-267, 2007.
Lin, H., Hopmans, J. W., and Richter, D. D.: Interdisciplinary Sciences in a Global Network of Critical Zone Observatories All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher, Vadose Zone J., 10, 781–785, 2011.
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Global long-term passive microwave satellite-based retrievals of vegetation optical depth, Geophys. Res. Lett., 38, L18402, https://doi.org/10.1029/2011GL048684, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., De Jeu, R. A. M., Wagner, W., McCabe, M. F., Evans, J. P., and Van Dijk, A. I. J. M.: Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280–297, 2012.
Manfreda, S., McCabe, M. F., Fiorentino, M., Rodríguez-Iturbe, I., and Wood, E. F.: Scaling characteristics of spatial patterns of soil moisture from distributed modelling, Adv. Water Resour., 30, 2145–2150, 2007.
Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., and Verhoest, N.:. Improving Terrestrial Evaporation Estimates over Continental Australia Through Assimilation of SMOS Soil Moisture, Int. J. Appl. Earth Obs. Geoinf., https://doi.org/10.1016/j.jag.2015.09.012, 2016.
McCabe, M. F. and Wood, E. F.: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors, Remote Sens. Environ., 105, 271–285, 2006.
McCabe, M. F., Kalma, J. D., and Franks, S. W.: Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework, Hydrol. Earth Syst. Sci., 9, 467–480, https://doi.org/10.5194/hess-9-467-2005, 2005.
Mccabe, M., Wood, E., Wójcik, R., Pan, M., Sheffield, J., Gao, H., and Su, H.: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies, Remote Sens. Environ., 112, 430–444, 2008.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote sensing-based evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, 2016.
Mintz, Y. and Walker, G.: Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature, J. Appl. Meteorol., 32, 1305–1334, 1993.
Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., and Dolman, J. A.: El Niño–La Niña cycle and recent trends in continental evaporation, Nature Clim. Change, 4, 122–126, 2014.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Dolman, A. J., Fisher, J. B., Martens, B., Mu, Q., Seneviratne, S. I., Weber, U., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global land evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163–187, 1945.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, 2011.
Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G., and Running, S. W.: A Remotely Sensed Global Terrestrial Drought Severity Index, B. Am. Meteor. Soc., 94, 83–98, 2013.
Oglesby, R. J. and Erickson, D. J.: Soil Moisture and the Persistence of North American Drought, J. Climate, 2, 1362–1380, 1989.
Penman, H. L.: Natural Evaporation from Open Water, Bare Soil and Grass, Proc. Roy. Soc. London A, 193, 120–145, 1948.
Pollacco, J. A. P. and Mohanty, B. P.: Uncertainties of Water Fluxes in Soil–Vegetation–Atmosphere Transfer Models: Inverting Surface Soil Moisture and Evapotranspiration Retrieved from Remote Sensing, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0167, 2012.
Rana, G. and Katerji, N.: A Measurement Based Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Model for Crops of Different Height and in Contrasting Water Status, Theor. Appl. Climatol., 60, 141–149, 1998.
Schär, C., Lüthi, D., Beyerle, U., and Heise, E.: The Soil–Precipitation Feedback: A Process Study with a Regional Climate Model, J. Climate, 12, 722–741, 1999.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, 2010.
Seneviratne, S. I., Luthi, D., Litschi, M., and Schar, C.: Land-atmosphere coupling and climate change in Europe, Nature, 443, 205–209, 2006.
Shahrokhnia, M. H. and Sepaskhah, A. R.: Evaluation of wheat and maize evapotranspiration determination by direct use of the Penman–Monteith equation in a semi-arid region, Arch Acker Pfl. Boden., 58, 1283–1302, 2011.
Solano, R., Didan, K., Jacobson, A., and Huete, A.: MODIS Vegetation Index User's Guide, in: Vegetation Index and Phenology Lab, The University of Arizona, 2010.
Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M. B.: Model parameter analysis using remotely sensed pattern information in a multi-constraint framework, J. Hydrol., 409, 337–349, 2011.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002a.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002b.
Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere, J. Appl. Meteorol., 40, 1933–1951, 2001.
Su, H., McCabe, M. F., Wood, E. F., Su, Z., and Prueger, J.: Modeling evapotranspiration during SMACEX: Comparing two approaches for local-and regional-scale prediction, J. Hydrometeorol., 6, 910–922, 2005a.
Su, H., McCabe, M. F., Wood, E. F., Su, Z., and Prueger, J. H.: Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction, J. Hydrometeorol., 6, 910–922, 2005b.
Sumner, D. M. and Jacobs, J. M.: Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration, J. Hydrol., 308, 81–104, 2005.
Thornton, P. E.: Regional ecosystem simulation: Combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets, 280–280, University of Montana, 1998.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses, J. Climate, 24, 4907–4924, 2011.
Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.: Upscaling Hydraulic Properties and Soil Water Flow Processes in Heterogeneous Soils, Vadose Zone J., 6, 1–28, https://doi.org/10.2136/vzj2006.0055, 2007.
Vinukollu, R. K., Sheffield, J., Wood, E. F., Bosilovich, M. G., and Mocko, D.: Multimodel Analysis of Energy and Water Fluxes: Intercomparisons between Operational Analyses, a Land Surface Model, and Remote Sensing, J. Hydrometeorol., 13, 3–26, 2011.
Wan, Z.: MODIS Land-Surface Temperature Algorithm Theoretical Basic Document (LST ATBD), version 3.3, ICESS, University of California, Santa Barbara, 2009.
Wang, L., D'Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology and climate change: critical issues and technical advances, Hydrol. Earth Syst. Sci., 16, 2585–2603, https://doi.org/10.5194/hess-16-2585-2012, 2012.
Wetzel, P. J. and Chang, J.-T.: Concerning the relationship between evapotranspiration and soil moisture, J. Climate Appl. Meteorol., 26, 18–27, 1987.
Zhang, J., Wang, W. C., and Wei, J.: Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation, J. Geophys. Res.-Atmos., 113, D17119, https://doi.org/10.1029/2008JD009807, 2008.
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
Short summary
Interactions between soil moisture and terrestrial evaporation affect responses between land surface and the atmosphere across scales. We present an analysis of the link between soil moisture and evaporation estimates from three distinct models. The relationships were examined over nearly 2 years of observation data. Results show that while direct correlations of raw data were mostly not useful, the root-zone soil moisture and the modelled evaporation estimates reflect similar distributions.
Interactions between soil moisture and terrestrial evaporation affect responses between land...