Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2947-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-2947-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Morphological dynamics of an englacial channel
Geir Vatne
CORRESPONDING AUTHOR
Department of Geography, Norwegian University of Science and
Technology (NTNU), 7491 Trondheim, Norway
Tristram D. L. Irvine-Fynn
Centre for Glaciology, Department of Geography and Earth Sciences,
Aberystwyth University, Aberystwyth, SY23 3DB, UK
Related authors
No articles found.
Andrew J. Tedstone, Joseph M. Cook, Christopher J. Williamson, Stefan Hofer, Jenine McCutcheon, Tristram Irvine-Fynn, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 521–538, https://doi.org/10.5194/tc-14-521-2020, https://doi.org/10.5194/tc-14-521-2020, 2020
Short summary
Short summary
Albedo describes how much light that hits a surface is reflected without being absorbed. Low-albedo ice surfaces melt more quickly. There are large differences in the albedo of bare-ice areas of the Greenland Ice Sheet. They are caused both by dark glacier algae and by the condition of the underlying ice. Changes occur over centimetres to metres, so satellites do not always detect real albedo changes. Estimates of melt made using satellite measurements therefore tend to be underestimates.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
Short summary
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
H. J. Langford, T. D. L. Irvine-Fynn, A. Edwards, S. A. Banwart, and A. J. Hodson
Biogeosciences, 11, 5365–5380, https://doi.org/10.5194/bg-11-5365-2014, https://doi.org/10.5194/bg-11-5365-2014, 2014
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Theory development
Changing snow water storage in natural snow reservoirs
Hydrological response to warm and dry weather: do glaciers compensate?
Midwinter melts in the Canadian prairies: energy balance and hydrological effects
Impact of glacier loss and vegetation succession on annual basin runoff
Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment
Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis
Laboratory evidence for enhanced infiltration of ion load during snowmelt
Christina Marie Aragon and David F. Hill
Hydrol. Earth Syst. Sci., 28, 781–800, https://doi.org/10.5194/hess-28-781-2024, https://doi.org/10.5194/hess-28-781-2024, 2024
Short summary
Short summary
A novel snow metric, snow water storage (SwS), is used to characterize the natural reservoir function of snowpacks, quantifying how much water is held in snow reservoirs and for how long. Despite covering only 16 % of US land area, mountainous regions contribute 72 % of the annual SwS. Recent decades show a 22 % decline in annual mountain SwS. Flexible snow metrics such as SwS may become more valuable for monitoring and predicting water resources amidst a future of increased climate variability.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Igor Pavlovskii, Masaki Hayashi, and Daniel Itenfisu
Hydrol. Earth Syst. Sci., 23, 1867–1883, https://doi.org/10.5194/hess-23-1867-2019, https://doi.org/10.5194/hess-23-1867-2019, 2019
Short summary
Short summary
Midwinter melts are often an overlooked factor in hydrological processes in the cold regions. The present paper highlights the effect of melt timing on energy balance and discusses how midwinter melts affect streamflows and groundwater recharge.
Evan Carnahan, Jason M. Amundson, and Eran Hood
Hydrol. Earth Syst. Sci., 23, 1667–1681, https://doi.org/10.5194/hess-23-1667-2019, https://doi.org/10.5194/hess-23-1667-2019, 2019
Short summary
Short summary
We model the effects of glacier dynamics, climate, and plant succession on annual streamflow during glacier retreat. Streamflow initially increases as the glacier melts, but eventually decreases to below preretreat levels due to increases in evapotranspiration. Glacier dynamics largely controls early variations in streamflow, whereas plant succession plays a progressively larger roll throughout. We show that glacier dynamics and landscape evolution are equally important in predicting streamflow.
Travis R. Roth and Anne W. Nolin
Hydrol. Earth Syst. Sci., 21, 5427–5442, https://doi.org/10.5194/hess-21-5427-2017, https://doi.org/10.5194/hess-21-5427-2017, 2017
Short summary
Short summary
Maritime snowpacks are temperature sensitive and experience disproportionate effects of climate warming and changing forest cover. We studied the combined effects of forest cover, climate variability, and elevation on snow in a maritime montane environment. The dense, relatively warm forests at Low and Mid sites impede snow accumulation through increased canopy snow interception and increased energy inputs to the snowpack. These results are needed for improved forest cover model representation.
Chris M. DeBeer, Howard S. Wheater, Sean K. Carey, and Kwok P. Chun
Hydrol. Earth Syst. Sci., 20, 1573–1598, https://doi.org/10.5194/hess-20-1573-2016, https://doi.org/10.5194/hess-20-1573-2016, 2016
Short summary
Short summary
This paper provides a comprehensive review and up-to-date synthesis of the observed changes in air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge over the interior of western Canada since the mid- or late 20th century. Important long-term observational networks and data sets are described, and qualitative linkages among the changing Earth system components are highlighted.
G. Lilbæk and J. W. Pomeroy
Hydrol. Earth Syst. Sci., 14, 1365–1374, https://doi.org/10.5194/hess-14-1365-2010, https://doi.org/10.5194/hess-14-1365-2010, 2010
Cited articles
Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustments to maximum flow resistance, Water Resour. Res., 31, 2593–2602, 1995.
Ahlstrøm, A. P.: Previous glaciological activities related to hydropower at Paakitsoq, Ilulissat, West Greenland, Geol. Surv. Den. Greenl., Copenhagen, 43 pp., 2007.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Luthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Ashida, K., Takahashi, T., and Sawada, T.: Sediment yield and transport on a mountainous small watershed, Bulletin of the Disaster Prevention Research Institute, 26, 119–144, 1976.
Bælum, K. and Benn, D. I.: Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar, The Cryosphere, 5, 139–149, https://doi.org/10.5194/tc-5-139-2011, 2011.
Barrand, N. E., James, T. D., and Murray, T.: Spatiotemporal variability in elevation changes of two high-Arctic valley glaciers, J. Glaciol., 56, 771–780, 2010.
Baynes, E. R. C., Attal, M., Niedermann, S., Kirstein, L. A., Dugmore, A. J., and Naylor, M.: Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland, P. Natl. Acad. Sci. USA, 112, 2355–2360, https://doi.org/10.1073/pnas.1415443112, 2015.
Benn, D., Gulley, J., Luckman, A., Adamek, A., and Glowacki, P. S.: Englacial drainage system formed by hydrologically driven crevasse propoagation, J. Glaciol., 55, 513–523, 2009.
Bishop, P., Hoey, T. B., Jansen, J. D., and Artza, I. L.: Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland, Earth Surf. Proc. Land, 30, 767–778, https://doi.org/10.1002/esp.1191, 2005.
Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J. O., Liestøl, O., Pálsson, F., and Erlingsson, B.: The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding, J. Glaciol., 42, 23–32, 1996.
Blanckaert, K. and De Vriend, H. J.: Secondary flow in sharp open-channel bends, J. Fluid Mech., 498, 353–380, https://doi.org/10.1017/S0022112003006979, 2004.
Boon, S. and Sharp, M.: The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier, Geophys. Res. Lett., 30, 1916, https://doi.org/10.1029/2003gl018034, 2003.
Brykała, D.: Short-term changes of flow intensity and hydraulic geometry of the supraglacial stream on Waldemar Glacier (NW Spitsbergen). Quaternary Paleogeography and Changes of the Polar Environment: Spitsbergen Geographical Expedition: IV Conference of Polish Geomorphologists, Lublin, Poland., 25-39, 1998.
Carling, P. A., Tych, W., and Richardson, K.: The hydraulic scaling of step-pool systems, in: River, coastal and estuarine morphodynamics, edited by: Parker, G. and Garcia, M. H., Taylor & Francis, New York, 2005.
Carver, S., Sear, D., and Valentine, E.: An observation of roll waves in a supraglacial meltwater channel, Harlech Gletscher, East Greenland, J. Glaciol., 40, 75–78, 1994.
Castillo, M., Bishop, P., and Jansen, J. D.: Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland, Geomorphology, 180–181, 1–9, https://doi.org/10.1016/j.geomorph.2012.08.023, 2013.
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial drainage in the ablation zone of the Greenland ice sheet, J. Glaciol., 54, 567–578, https://doi.org/10.3189/002214308786570854, 2008.
Chanson, H.: Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes, J. Hydraul. Res., 32, 213–218, 1994.
Chartrand, S. M. and Whiting, P. J.: Alluvial architecture in headwater streams with special emphasis on step-pool topography, Earth Surf. Proc. Land., 25, 583–600, 2000.
Chen, D. and Tang, C.: Evaluating secondary flows in the evolution of sine-generated meanders, Geomorphology, 163–164, 37-44, https://doi.org/10.1016/j.geomorph.2012.04.010, 2012.
Chin, A.: Step pools in stream channels, Prog. Phys. Geog., 13, 391–408, 1989.
Chin, A.: On the stability of step-pool mountain streams, J. Geol., 106, 59–70, https://doi.org/10.1086/516007, 1998.
Chin, A.: The period nature of step-pool mountain streams, Am. J. Sci., 302, 144–167, 2002.
Chin, A.: The geomorphic significance of step–pools in mountain streams, Geomorphology, 55, 125–137, 2003.
Chin, A. and Phillips, J. D.: The self-organization of step-pools in mountain streams, Geomorphology, 83, 346–358, 2007.
Chin, A. and Wohl, E.: Toward a theory for step pools in stream channels, Prog. Phys. Geog., 29, 275–296, 2005.
Church, M.: Geomorphic thresholds in riverine landscapes, Freshwater Biol., 47, 541–557, 2002.
Church, M. and Zimmermann, A.: Form and stability of step-pool channels: Research progress, Water Resour. Res., 43, W03415, https://doi.org/10.1029/2006wr005037, 2007.
Clayton, L.: Karst topography on stagnant glaciers, J. Glaciol., 5, 107–112, 1964.
Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels, Water Resour. Res., 45, W04424, https://doi.org/10.1029/2008WR007259, 2009.
Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation, Earth Surf. Proc. Land., 38, 683–695, https://doi.org/10.1002/esp.3313, 2013.
Crosby, B. T. and Whipple, K. X.: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand, Geomorphology, 82, 16–38, https://doi.org/10.1016/j.geomorph.2005.08.023, 2006.
Cuffey, K. M. and Paterson, W. M.: The physics of glaciers, Elsevier, Oxford, 2010.
Curran, J. H. and Wohl, E. E.: Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington, Geomorphology, 51, 141–157, https://doi.org/10.1016/s0169-555x(02)00333-1, 2003.
Davis, W. M.: Piedmont benchlands and primarrumpfle, Geol. Soc. Am. Bull., 43, 399–440, 1932.
Dozier, J.: Channel adjustments in supraglacial streams, Icefield Ranges Research Project, American Geographical Society, Scientific Results, 4, 189–205, 1974.
Dozier, J.: Examination of Variance Minimization Tendencies of a Supra-Glacial Stream, J. Hydrol., 31, 359–380, 1976.
Dust, D. and Wohl, E.: Characterization of the hydraulics at natural step crests in step-pool streams via weir flow concepts, Water Resour. Res., 48, W09542, https://doi.org/10.1029/2011WR011724, 2012.
Evatt, G. W.: Röthlisberger channels with finite ice depth and open channel flow, Ann. Glaciol., 56, 45–50, https://doi.org/10.3189/2015AoG70A992, 2015.
Ferguson, R. I.: Sinuosity of Supraglacial Streams, Geol. Soc. Am. Bull., 84, 251–255, 1973.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and Skaugen, T. E.: Temperature and Precipitation Development at Svalbard 1900–2100, Advances in Meteorology, 2011, 893790, https://doi.org/10.1155/2011/893790, 2011.
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers, Rev. Geophys., 36, 299–328, https://doi.org/10.1029/97RG03579, 1998.
Gardner, T. W.: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material, Geol. Soc. Am. Bull., 94, 664–672, https://doi.org/10.1130/0016-7606(1983)94<664:esokal>2.0.co;2, 1983.
Garmin: http://www8.garmin.com/aboutGPS/ (last access: 3 March 2015), 2015.
Grant, G. E., Swanson, F. J., and Wolman, M. G.: Pattern and origin of stepped-bed morphology in high-gradient streams, Western Cascades, Oregon, Geol. Soc. Am. Bull., 102, 340–352, https://doi.org/10.1130/0016-7606(1990)102<0340:paoosb>2.3.co;2, 1990.
Griselin, M.: In the depth of a small polar glacier (Loven East Glacier, Spitsbergen), Proceedings of the 2nd International GLACKIPR Symposium, University of Silesia, Poland, 10–16 February 1992, 51–63, 1992.
Gulley, J.: Structural control of englacial conduits in the temperate Matanuska Glacier, Alaska, USA, J. Glaciol., 55, 681–690, 2009.
Gulley, J. and Benn, D. I.: Structural control of englacial conduits in Himalayan debris-covered glaciers, J. Glaciol., 53, 399–412, 2007.
Gulley, J. D., Benn, D. I., Muller, D., and Luckman, A.: A cut-and-closure origin for englacial conduits in uncrevassed regions of polythermal glaciers, J. Glaciol., 55, 66–80, 2009a.
Gulley, J. D., Benn, D. I., Screaton, E., and Martin, J.: Mechanisms of englacial conduit formation and their implications for subglacial recharge, Quaternary Sci. Rev., 28, 1984–1999, https://doi.org/10.1016/j.quascirev.2009.04.002, 2009b.
Hagen, J. O. and Lefauconnier, B.: Reconstructed runoff from the High Arctic basin Bayelva based on mass balance measurements, Nord. Hydrol., 26, 285–296, 1995.
Hagen, J. O. and Liestøl, O.: Long term glacier mass balance investigations in Svalbard, 1950–1988, Ann. Glaciol., 14, 102–106, 1990.
Hagen, J. O., Korsen, O. M., and Vatne, G.: Drainage pattern in a subpolar glacier: Brøggerbreen, Svalbard, in: Arctic Hydrology, Present And Future Tasks, edited by: Gjessing, Y., Hagen, J. O., Hassel, K. A., Sand, K., and Wold, B., Norwegian National Comittee of Hydrology, Oslo, 121–131, 1991.
Hambrey, M. J.: Supraglacial drainage and its relationship to structure, with particular reference of Charles Rabots Bre, Okstindan, Norway, Norsk Geogr. Tidsskr., 31, 69–77, 1977.
Hambrey, M. J.: Sudden draining of ice-dammed lakes in Spitsbergen, Polar Rec., 22, 189–194, 1984.
Haviv, I., Enzel, Y., Whipple, K. X., Zilberman, E., Matmon, A., Stone, J., and Fifield, K. L.: Evolution of vertical knickpoints (waterfalls) with resistant caprock: Insights from numerical modeling, J. Geophys. Res., 115, F03028, https://doi.org/10.1029/2008JF001187, 2010.
Hayakawa, Y. and Matsukura, Y.: Recession rates of waterfalls in Boso Peninsula, Japan, and a predictive equation, Earth Surf. Proc. Land., 28, 675–684, https://doi.org/10.1002/esp.519, 2003.
Hayakawa, Y. S. and Matsukura, Y.: Stability analysis of waterfall cliff face at Niagara Falls: An implication to erosional mechanism of waterfall, Eng. Geol., 116, 178–183, https://doi.org/10.1016/j.enggeo.2010.08.004, 2010.
Hayakawa, Y. S. and Oguchi, T.: DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers, Geomorphology, 78, 90–106, https://doi.org/10.1016/j.geomorph.2006.01.018, 2006.
Hayakawa, Y. S. and Oguchi, T.: GIS analysis of fluvial knickzone distribution in Japanese mountain watersheds, Geomorphology, 111, 27–37, https://doi.org/10.1016/j.geomorph.2007.11.016, 2009.
Hayakawa, Y. S. and Oguchi, T.: Spatial correspondence of knickzones and stream confluences along bedrock rivers in Japan: implications for hydraulic formation of knickzones, Geogr. Ann. A., 96, 9–19, https://doi.org/10.1111/geoa.12024, 2014.
Hodgkins, R., Tranter, M., and Dowdeswell, J. A.: The hydrochemistry of runoff from a “cold-based” glacier in the High Arctic (Scott Turnerbreen, Svalbard), Hydrol. Process., 12, 87–103, 1998.
Hodson, A., Gurnell, A., Tranter, M., Bogen, J., Hagen, J. O., and Clark, M. J.: Suspended sediment yield and transfer processes in a small High-Arctic glacier basin, Svalbard, Hydrol. Process., 12, 73–86, 1998.
Hodson, A., Tranter, M., and Vatne, G.: Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective, Earth Surf. Proc. Land., 25, 1447–1471, https://doi.org/10.1002/1096-9837(200012)25:13<1447::AID-ESP156>3.0.CO;2-9, 2000.
Hodson, A., Tranter, M., Gurnell, A., Clark, M., and Hagen, J. O.: The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard, J. Hydrol., 257, 91–114, 2002.
Holland, W. N. and Pickup, G.: Flume study of knicpoint development in stratified sediment, Geol. Soc. Am. Bull, 87, 76–82, 1976.
Holmlund, P.: Internal geometry and evolution of moulins, Storglaciären, Sweeden, J. Glaciol., 34, 242–248, 1988.
Holtermann, C.: Flow conditions within englacial drainage channels. A dye tracer study from Austre Brøggerbreen, Svalbard, MS thesis, Dept. of Geography, Norwegian University of Science and Technology, Trondheim, 58 pp., 2007.
Howard, A. D.: Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion, and sediment transport, in: Rivers Over Rock: Fluvial processes in Bedrock channels, edited by: Thinkler, K. J. and Wohl, E. E., AGU, Washington D.C., 1998.
Ikeda, H.: Large-scale grooves formed by scour on cohesive mud surfaces, Bulletin of Environmental Research Center, the University of Tsukuba, Japan, 2, 91–95, 1978.
Iken, A.: Measurement of water pressure in moulins as partof a movement study of the White Glacier, Axel Heiberg Island, NWT, Canada, J. Glaciol., 11, 53–58, 1972.
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard, A. L.: Polythermal glacier hydrology: A review, Rev. Geophys., 49, RG4002, https://doi.org/10.1029/2010RG000350, 2011.
Isenko, E.: Water levels and temperatures in moulins, and other hydrological observations at Bashkara Glacier in Caucasus, Russia, in September 2005, Bulletin of Glaciological Research, 23, 95–99, 2006.
Isenko, E. and Mavluydov, B. R.: On the intensity of ice melting in supraglacial and englacial channels, Bull. Glaciol. Res., 19, 93–99, 2002.
Isenko, E., Naruse, R., and Mavlyudov, B.: Water temperature in englacial and supraglacial channels: Change along the flow and contribution to ice melting on the channel wall, Cold Reg. Sci. Technol., 42, 53–62, 2005.
James, T. D., Murray, T., Barrand, N. E., Sykes, H. J., Fox, A. J., and King, M. A.: Observations of enhanced thinning in the upper reaches of Svalbard glaciers, The Cryosphere, 6, 1369-1381, https://doi.org/10.5194/tc-6-1369-2012, 2012.
Jansen, J. D.: Flood magnitude–frequency and lithologic control on bedrock river incision in post-orogenic terrain, Geomorphology, 82, 39–57, https://doi.org/10.1016/j.geomorph.2005.08.018, 2006.
Jarosch, A. H. and Gudmundsson, M. T.: A numerical model for meltwater channel evolution in glaciers, The Cryosphere, 6, 493–503, https://doi.org/10.5194/tc-6-493-2012, 2012.
Jennings, S. J. A., Hambrey, M. J., Glasser, N. F., James, T. D., and Hubbard, B.: Structural glaciology of Austre Brøggerbreen, northwest Svalbard, J. Maps, 1–7, https://doi.org/10.1080/17445647.2015.1076744 (last access: 1 September 2015), 2015.
Karlstrom, L., Gajjar, P., and Manga, M.: Meander formation in supraglacial streams, J. Geophys. Res.-Earth, 118, 1897–1907, https://doi.org/10.1002/jgrf.20135, 2013.
Knighton, A. D.: Meandering Habit of Supraglacial Streams, Geol. Soc. Am. Bull., 83, 201–204, 1972.
Knighton, A. D.: Channel form and flow characteristics of supraglacial streams, Austre Okstindbreen, Norway, Arctic Alpine Res., 13, 295–306, 1981.
Knighton, A. D.: Channel form adjustment in supraglacial streams, Austre Okstindbreen, Norway, Arctic Alpine Res., 17, 451–466, 1985.
Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E., Aas, H. F., and Luckman, A.: Acceleration in thinning rate on western Svalbard glaciers, Geophys. Res. Lett., 34, L18502, https://doi.org/10.1029/2007gl030681, 2007.
König, M., Kohler, J., and Nuth, C.: Glacier Area Outlines – Svalbard, edited by: Institute, N. P., Norwegian Polar Institute, Tromsø, 2013.
Kostrzewski, A. and Zwoliñski, Z.: Hydraulic geometry of a supraglacial stream, Quaestiones Geographicae, 4, 165–176, available at: http://www.staff.amu.edu.pl/~zbzw/gh/gh1.htm, last access: 9 June 2015, 1995.
Lamb, M. P., Howard, A. D., Dietrich, W. E., and Perron, J. T.: Formation of amphitheater-headed valleys by waterfall erosion after large-scale slumping on Hawai'i, Bull Geol. Soc. Am., 119, 805–822, https://doi.org/10.1130/B25986.1, 2007.
Larue, J.-P.: Effects of tectonics and lithology on long profiles of 16 rivers of the southern Central Massif border between the Aude and the Orb (France), Geomorphology, 93, 343–367, https://doi.org/10.1016/j.geomorph.2007.03.003, 2008.
Leopold, L. B., Bagnold, R. A., Wolman, M. G., and Brush, L. M.: Flow Resistance in Sinuous or Irregular Channels, USGS, Washington D.C., 134 pp., 1960.
Lock, G. S. N.: The Growth and Decay of Ice, Cambridge University Press, Cambridge, UK, 1990.
Loget, N. and Van Den Driessche, J.: Wave train model for knickpoint migration, Geomorphology, 106, 376–382, https://doi.org/10.1016/j.geomorph.2008.10.017, 2009.
Mantelli, E., Camporeale, C., and Ridolfi, L.: Supraglacial channel inception: Modeling and processes, Water Resour. Res., 51, 7044–7063, https://doi.org/10.1002/2015WR017075, 2015.
Marston, R. A.: Supraglacial Stream Dynamics on the Juneau Icefield, Ann. Assoc. Am. Geogr., 73, 597–608, 1983.
Mason, J. P. and Arumugam, K.: Free Jet Scour Below Dams and Flip Buckets, J. Hydraul. Eng.-ASCE, 111, 220–235, https://doi.org/10.1061/(ASCE)0733-9429(1985)111:2(220), 1985.
Mavlyudov, B.: Glacier karst, why it is important to research, Acta Carsologica, 35, 55–67, 2006.
Mavlyudov, B. R.: About new type of subglacial channels, in: Glacier Cave and Glacial Karst in High Mountains and Polar Regions, edited by: Mavlyudov, B. R., Institute of Geography RAS, Moscow, 54–60, 2005.
McGrath, D., Colgan, W., Steffen, K., Lauffenburger, P., and Balog, J.: Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet, J. Glaciol., 57, 954–964, 2011.
Miller, J. R.: The Influence of Bedrock Geology on Knickpoint Development and Channel-Bed Degradation along Downcutting Streams in South-Central Indiana, J. Geol., 99, 591–605, 1991.
Milzow, C., Molnar, P., McArdell, B. W., and Burlando, P.: Spatial organization in the step-pool structure of a steep mountain stream (Vogelbach, Switzerland), Water Resour. Res., 42, W04418, https://doi.org/10.1029/2004WR003870, 2006.
Molnar, P., Densmore, A. L., McArdell, B. W., Turowski, J. M., and Burlando, P.: Analysis of changes in the step-pool morphology and channel profile of a steep mountain stream following a large flood, Geomorphology, 124, 85–94, https://doi.org/10.1016/j.geomorph.2010.08.014, 2010.
Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bull., 109, 596–611, 1997.
Müller, D.: Incision and Closure Processes of Meltwater Channels on the Glacier Longyearbreen, Spitsbergen, MS thesis Master Thesis, Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig, 102 pp., 2007.
Myreng, S.: Characteristics and long-term evolution of an englacial meltwater channel in an cold-based glacier, Austre Brøggerbreen, Svalbard, MS thesis, Dept. of Geography Norwegian University of Science and Technology, Trondheim, 76 pp., 2015.
Naegeli, K., Lovell, H., Zemp, M., and Benn, D. I.: Dendritic Subglacial Drainage Systems in Cold Glaciers Formed by Cut-and-Closure Processes, Geogr. Ann. A, 96, 591–608, https://doi.org/10.1111/geoa.12059, 2014.
Nowak, A. and Hodson, A.: Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard, Polar Res., 32, 19691, https://doi.org/10.3402/polar.v32i0.19691, 2013.
Nye, J. F.: The Flow Law of Ice from Measurements in Glacier Tunnels, Laboratory Experiments and the Jungfraufirn Borehole Experiment, P. Roy. Soc. Lond. Ser.-A, 219, 477–489, https://doi.org/10.1098/rspa.1953.0161, 1953.
Pagliara, S. and Hager, W.: Hydraulics of Plane Plunge Pool Scour, J. Hydraul. Eng.-ASCE, 132, 450-461, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(450), 2006.
Parker, G.: Meandering of supraglacial melt streams, Water Resour. Res., 11, 551–552, 1975.
Penck, W. O.: Die piedmontflachen des sudlichen schwartzwaldes, Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 1, 81–108, 1925.
Peterka, A. J.: Hydraulic design of stilling basins and energy dissipators, United States Department of the Interior, Denver, Colorado, 240 pp., 1963.
Peterson, D. F. and Mohanty, P. K.: Flume studies of flow in steep, rough channels, J. Hydr. Eng. Div.-ASCE, 86, 55–76, 1960.
Phillips, J. D., McCormack, S., Duan, J., Russo, J. P., Schumacher, A. M., Tripathi, G. N., Brockman, R. B., Mays, A. B., and Pulugurtha, S.: Origin and interpretation of knickpoints in the Big South Fork River basin, Kentucky–Tennessee, Geomorphology, 114, 188–198, https://doi.org/10.1016/j.geomorph.2009.06.023, 2010.
Phillips, R. T. J. and Desloges, J. R.: Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes, Geomorphology, 206, 271–287, https://doi.org/10.1016/j.geomorph.2013.09.030, 2013.
Piccini, L., Romeo, A., and Badino, G.: Moulins and marginal contact caves in the Gornergletcher, Switzerland, Nimbus, 23–24, 94–99, 2000.
Pinchak, A. C.: Diurnal flow variations, thermal erosion and evolution of supraglacial meltwater streams, in: A principles study of factors affecting the hydrological balance of the Lemon Glacier system and adjacent sectors of the Juneau Icefield, southeastern Alaska, 1965–1969, edited by: Miller, M., Inst. Water Res., Michigan State University, East Lansing, Michigan, Technical Report No. 33, 1972.
Porter, P. R., Vatne, G., Ng, F., and Irvine-Fynn, T. D. L.: Ice-marginal sediment delivery to the surface of a High-Arctic glacier: Austre Brøggerbreen, Svalbard., Geogr. Ann. A, 92, 437-449, https://doi.org/10.1111/j.1468-0459.2010.00406.x, 2010.
Pulina, M.: Glacierkarst phenomena in Spitsbergen, Norsk Geogr. Tidsskr., 38, 163–168, https://doi.org/10.1080/00291958408552121, 1984.
Pulina, M. and Rehak, J.: Glacier Caves in Spitsbergen, 1st International Symposium of Glacier Caves and Karst in Polar Regions, 1–5 October 1991, Madrid, 93–117, 1991.
Raymond, C. F. and Nolan, M. A. T. T.: Drainage of a glacial lake through an ice spillway, IAHS-AISH P., 264, 199—210, 2000.
Řehák, J., Ouhrabka, V., and Braun, J.: New information about the interior drainage of subpolar glaciers and the structure of medial moraines of the southwest Spitsbergen, Studia Carsologica (Czech Academy of Science), 1, 14–56, 1990.
Reynaud, L. and Moreau, L.: Moulins glaciaires des glaciers tempérés et froids de 1986 à 1994 (mer de glace et Groenland), morphologie et techniques de meures de la déformation de la glace, Actes du 3° symposium International cavités glaciaires et cryokarst en régions polaires et de haute montagne, 1–6 November 1994, Camonix, 109–113, 1994.
Richardson, K., Carling, P. A.: A typology of sculpted forms in open bedrock channels, Geol. Soc. Am., Boulder, CO, USA, Special Papers 392, 2005.
Röthlisberger, H. and Lang, H.: Glacier Hydrology, in: Glacio-fluvial sediment transfer: An Alpine perspective, edited by: Gurnell, A. and Clark, M. J., John Wiley and Sons, New York, 1987.
Schroeder, J.: Les moulins du glacier Hans de 1988 a 1992, Cavites glaciaires et cryokarst en regions polaires et de haut montagne, Chamonix, France, 1994.
Schroeder, J.: Hans glacier moulins observed from 1988 to 1992, Svalbard, Norsk Geogr. Tidsskr., 52, 79–88, 1998.
Schroeder, J.: Moulins of a glacier seen as a thermal anomaly, in: Karst and CryoKarst: Joint Proceedings of the 25th Spelological School and the 8th International GLACKIPR Symposium, Katowice, Poland, 10–16 February 2007, 65–74, 2007.
Shreve, R. L.: Movement of water in glaciers, J. Glaciol., 11, 205–214, 1972.
Shumm, S. A., Dumont, J. F., and Holbrook, J. M.: Active tectonics and alluvial rivers, Cambridge University Press, Cambridge, UK, 2000.
Sklar, L. S. and Dietrich, W. E.: Sediment and rock strength controls on river incision into bedrock, Geology, 29, 1087, https://doi.org/10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2, 2001.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D. C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Stein, O. R., Julien, P. Y., and Alonso, C. V.: Mechanics of jet scour downstream of a headcut, J. Hydraul. Res., 31, 723–738, https://doi.org/10.1080/00221689309498814, 1993.
Stenborg, T.: Glacier drainage connected with ice structures, Geogr. Ann. A, 50, 25–53, 1968.
Stock, J. and Pinchak, A. C.: Diurnal discharge fluctuations and streambed ablation in a supraglacial stream on the Vaughan-Lewis and Gilkey Glaciers, Juneau Icefield, Alaska, Proceedings of the ASME Heat Transfer and Fluids Engineering Divisions, 285–292, 1995.
Stuart, G., Murray, T., Gamble, N., Hayes, K., and Hodson, A.: Characterization of englacial channels by ground-penetrating radar: An example from austre Broggerbreen, Svalbard, J. Geophys. Res., 108, 2525, https://doi.org/10.1029/2003JB002435, 2003.
Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34, 1661–1673, https://doi.org/10.1002/esp.1855, 2009.
Vallé, B. L. and Pasternack, G. B.: Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel, Geomorphology, 82, 146–159, https://doi.org/10.1016/j.geomorph.2005.09.024, 2006.
Vatne, G.: Geometry of englacial water conduits, Austre Brøggerbreen, Svalbard, Norsk Geogr. Tidsskr., 55, 85–93, 2001.
Vatne, G. and Refsnes, I.: Channel pattern and geometry of englacial conduits, Glacier Caves and Karst in Polar Regions, 6th International Symposium, 3–8 September 2003, Ny-Ålesund, Svalbard, 181–188, 2003.
Venditti, J. G., Rennie, C. D., Bomhof, J., Bradley, R. W., Little, M., and Church, M.: Flow in bedrock canyons, Nature, 513, 534–537, https://doi.org/10.1038/nature13779, 2014.
Whipple, K. X.: Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Pl. Sc., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
Whipple, K. X. and Tucker, G. E.: Implications of sediment-flux-dependentriver incision models for landscape evolution, J. Geophys. Res., 107, 3-1–3-20, 2002.
Whipple, K. X., Hancock, G. S., and Anderson, R. S.: River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geol. Soc. Am. Bull., 112, 490–503, 10.1130/0016-7606(2000)112<490:riibma>2.0.co;2, 2000.
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., and Robberts, P. J.: Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates, Geology, 35, 103–106, 2007.
Whittaker, J. G.: Sediment transport in step-pool streams, in: Sediment ransport in gravel-bed rivers, edited by: Thorne, C. R., Bathurst, J. C., and Hey, R. D., J. Wiley, Chichester, UK, 545–582, 1987.
Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step-pool channel, Water Resour. Res., 47, W07514, https://doi.org/10.1029/2010WR010192, 2011.
Wohl, E. E.: Bedrock Channel Incision along Piccaninny Creek, Australia, J. Geol., 101, 749–761, 1993.
Wohl, E. E.: Bedrock Channel Morphology in Relation to Erosional Processes, in: Rivers Over Rock: Fluvial Processes in Bedrock Channels, edited by: Tinkler, K. J. and Wohl, E. E., American Geophysical Union, Washington, D.C., 133–151, https://doi.org/10.1029/GM107p0133, 2013.
Wohl, E. E. and Grodek, T.: Channel bed-steps along Nahal Yael, Negev desert, Israel, Geomorphology, 9, 117–126, 1994.
Wohl, E. E., Thompson, D. M., and Miller, A. J.: Canyons with undulating walls, Geol. Soc. Am. Bull., 111, 949–959, https://doi.org/10.1130/0016-7606(1999)111<0949:cwuw>2.3.co;2, 1999.
Young, R. W.: Waterfalls: form and process, Z. Geomorphol. Supp., 55, 81–95, 1985.
Zeller, J.: Meandering channels in Switzerland, IAHS-IASH P., 75, 174–186, 1967.
Zotikov, I. A.: Thermal physics of glacial sheets, Gidrometeoizdat, Leningrad, 288 pp., 1982 (in Russian).
Short summary
Ten years of direct observations of an englacial conduit in a cold based glacier in Svalbard document for the first time how a vertical meltwater waterfall (moulin) is formed from gradual incision of a meltwater channel. This evolution appears to be dominated by knickpoints that incise upstream at rates several times faster than the vertical incision in adjacent near horizontal channel sections.
Ten years of direct observations of an englacial conduit in a cold based glacier in Svalbard...