High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
Abstract. Modelling rainfall–runoff in urban areas is increasingly applied to support flood risk assessment, particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the catchment area as model input.
While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increases as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data are often unavailable. Modern unmanned aerial vehicles (UAVs) allow one to acquire high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements and obtaining a degree of detail tailored for the purpose of the study.
In this study, we investigate for the first time the possibility of deriving high-resolution imperviousness maps for urban areas from UAV imagery and of using this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is proposed and evaluated in a state-of-the-art urban drainage modelling exercise. In a real-life case study (Lucerne, Switzerland), we compare imperviousness maps generated using a fixed-wing consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their overall accuracy, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyse the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and runoff volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet.
We show that imperviousness maps generated from UAV images processed with modern classification methods achieve an accuracy comparable to standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on predicted surface runoff and pipe flows, when traditional workflows are used. We expect that they will have a substantial influence when more detailed modelling approaches are employed to characterize land use and to predict surface runoff. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility of flexibly acquiring up-to-date aerial images at a quality compared with off-the-shelf image products and a competitive price at the same time. We believe that in the future, urban drainage models representing a higher degree of spatial detail will fully benefit from the strengths of UAV imagery.