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Abstract. Modelling rainfall–runoff in urban areas is in-

creasingly applied to support flood risk assessment, partic-

ularly against the background of a changing climate and an

increasing urbanization. These models typically rely on high-

quality data for rainfall and surface characteristics of the

catchment area as model input.

While recent research in urban drainage has been focusing

on providing spatially detailed rainfall data, the technologi-

cal advances in remote sensing that ease the acquisition of

detailed land-use information are less prominently discussed

within the community. The relevance of such methods in-

creases as in many parts of the globe, accurate land-use infor-

mation is generally lacking, because detailed image data are

often unavailable. Modern unmanned aerial vehicles (UAVs)

allow one to acquire high-resolution images on a local level

at comparably lower cost, performing on-demand repetitive

measurements and obtaining a degree of detail tailored for

the purpose of the study.

In this study, we investigate for the first time the possibil-

ity of deriving high-resolution imperviousness maps for ur-

ban areas from UAV imagery and of using this information as

input for urban drainage models. To do so, an automatic pro-

cessing pipeline with a modern classification method is pro-

posed and evaluated in a state-of-the-art urban drainage mod-

elling exercise. In a real-life case study (Lucerne, Switzer-

land), we compare imperviousness maps generated using a

fixed-wing consumer micro-UAV and standard large-format

aerial images acquired by the Swiss national mapping agency

(swisstopo). After assessing their overall accuracy, we per-

form an end-to-end comparison, in which they are used

as an input for an urban drainage model. Then, we eval-

uate the influence which different image data sources and

their processing methods have on hydrological and hydraulic

model performance. We analyse the surface runoff of the

307 individual subcatchments regarding relevant attributes,

such as peak runoff and runoff volume. Finally, we evaluate

the model’s channel flow prediction performance through a

cross-comparison with reference flow measured at the catch-

ment outlet.

We show that imperviousness maps generated from

UAV images processed with modern classification methods

achieve an accuracy comparable to standard, off-the-shelf

aerial imagery. In the examined case study, we find that the

different imperviousness maps only have a limited influence

on predicted surface runoff and pipe flows, when traditional

workflows are used. We expect that they will have a sub-

stantial influence when more detailed modelling approaches

are employed to characterize land use and to predict surface

runoff. We conclude that UAV imagery represents a valuable

alternative data source for urban drainage model applications

due to the possibility of flexibly acquiring up-to-date aerial

images at a quality compared with off-the-shelf image prod-

ucts and a competitive price at the same time. We believe that

in the future, urban drainage models representing a higher de-

gree of spatial detail will fully benefit from the strengths of

UAV imagery.
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1 Introduction

In the last century we have witnessed increased migration of

people from rural areas to cities. Today, the majority of the

human population live in cities, and this number is estimated

to grow constantly and reach a level of 60 % (UN, 2013). The

process of rapid urbanization required developing an infras-

tructure capable of coping with a constantly increasing num-

ber of its users. Accordingly, ensuring water supply for the

people is important, but due to the increased hydrological ex-

tremes induced by climate change (Hirabayashi et al., 2013;

Hall et al., 2014; Rojas et al., 2013), being able to safely di-

rect stormwater away from populated areas, in order to avoid

flooding, is not least a challenging task. It requires predict-

ing the hydraulic behaviour of the given drainage infrastruc-

ture using reliable hydrological models (Arrighi et al., 2013).

Those models, apart from detailed rainfall information, call

for surface characteristics such as imperviousness.

Impervious surfaces reduce the infiltration of water into

the soil. They can be directly related to a level of urbaniza-

tion (Stankowski, 1972), because in urban environments, im-

pervious surfaces dominate (e.g. rooftops or roads). Monitor-

ing of the imperviousness level is important as it directly im-

pacts many environmental processes. An increasing percent-

age of impervious surfaces increases surface runoff volume

and peak discharge, and decreases soil moisture compen-

sation and groundwater recharge. Moreover, increased peak

runoff volumes together with an inefficient drainage network

can not only cause urban floods, but also lead to an increased

hydraulic stress and increase the risk of loading waterbeds

with sediments, and its associated constituents (e.g. nutrients,

contaminants and micro-pollutants).

An important step towards automation of the processes ap-

plied to map impervious areas was made as a consequence

of remote sensing sensors and classification techniques de-

velopment (for a detailed review of remote sensing methods

used to map imperviousness, please refer to the Supplement).

In general, most of the studies on extraction of impervious

surfaces from remote sensing data focused on satellite im-

ages. During the last decade, a rapid improvement of imag-

ing sensors gave the end-user an access to very high spa-

tial resolution (VHR) imagery1. Satellite sensors like Ikonos

(Chormanski et al., 2008) and QuickBird (Zhou and Wang,

2008) or VHR aerial images (Fankhauser, 1999; Nielsen

et al., 2011) were quickly adopted for impervious surfaces

mapping. Some studies suggest using highly accurate meth-

ods to quantify landscape changes (land-use and land-cover)

using multi-sensor approaches (Forzieri et al., 2012a, b).

In the context of urban hydrology, Ravagnani et al. (2009)

attempted to use impervious surfaces extracted from VHR

satellite and aerial imagery as an input to the urban drainage

model, but they did not analyse pipe flow predictions, focus-

1We refer to a VHR image when sensor’s ground sampling dis-

tance (GSD) is lower than 1 m.

ing only on the surface runoff component. However, mod-

ern urban drainage modelling methods call for up-to-date and

detailed input data, which could also be acquired in an effi-

cient way. Even though VHR satellite images able to acquire

fine-grained image information (WorldView-3 satellite can

achieve up to 0.31 m GSD in panchromatic channel) and have

short revisit periods, are still expensive and vulnerable to

cloud cover. VHR aerial imagery on the other hand, although

being able to acquire very detailed imagery, is usually be-

ing updated at most once a year, but usually every third year

(swisstopo, 2010). Recently, imaging platforms based on

UAVs became very popular, finding their application in the

fields of photogrammetry, archeology or agriculture (Sauer-

bier and Eisenbeiß, 2010; Eisenbeiß, 2009; Zhang and Ko-

vacs, 2012). More recently, Leitão et al. (2015) investigated

the quality of digital elevation models (DEMs) generated us-

ing UAV imagery from urban drainage modelling applica-

tions. In the study, the authors show that the quality of UAV

DEMs is comparable to that of conventional, off-the-shelf

height data sets. However, to our best knowledge no studies

exist, that used UAV-based imagery to extract impervious-

ness information, and to use it in the field of urban drainage

modelling. In comparison to a standard, off-the-shelf satellite

or aerial remote sensing imagery, UAVs demonstrate greater

flexibility and are more efficient in terms of money and time.

Yet, the classification of UAV VHR imagery, particularly in

urban areas, is challenging, because in this level of detail,

many small objects appear, and fine-grained texture details of

larger objects emerge. Thus, describing an object class using

only single raw pixel values is insufficient. Accurate classi-

fication needs additional image features, which would char-

acterize the contextual information by describing an object’s

local neighbourhood. The value of such approach in classifi-

cation of surface imperviousness has already been acknowl-

edged (Moser et al., 2013). However, what is highly relevant,

but currently unclear, is how to best exploit the rich infor-

mation, i.e. the unprecedented level of detail and flexibility

to acquire problem-specific images. And, whether it is fea-

sible to use imagery acquired with UAVs for urban drainage

modelling.

Specifically, we present three key aspects:

1. We evaluate whether land-use data based on UAV im-

agery can be used to assess the performance of urban

drainage systems.

2. We propose a unique workflow based on a random-

ized quasi-exhaustive (RQE) feature bank and a boost-

ing classifier2. The RQE feature bank consists of a mul-

titude of multiscale textural features describing both,

spectral and height information (Tokarczyk et al., 2015).

The boosting classifier lends itself to the task to only

2The boosting classifier used in conjunction with RQE features

will be referred to as the “RQE method” in this paper.
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Figure 1. Overall analysis approach (	-%imp: model parameter “degree of imperviousness”; ML: maximum likelihood; RQE: boosting

with randomized quasi-exhaustive feature bank).

choose the optimal features during training (for details,

see below).

3. We perform end-to-end comparison of land use against

high-quality sewer pipe flow data. Although important

to correctly interpret the results, this is not routinely

done in remote sensing literature.

The key idea of our study was not to solely base the assess-

ment of the usefulness of UAV images for urban drainage

applications on the performance of the classifiers. Thus, we

demonstrate the usefulness of our approach by means of a

case study in a small urban area in Lucerne, Switzerland,

in two steps (see also Fig. 1): first, we compare the UAV

data with standard airborne imagery using a maximum like-

lihood (ML) classifier and the RQE method on both image

sources (1). Second, we use a hydrodynamic model to show

the consequences of different land-use information for urban

drainage performance indicators, here surface runoff (2) and

in-sewer pipe flow (3).

The remainder of the paper is structured as follows: first

we present a general approach and the case study catchment

with related material, such as the hydrodynamic rainfall–

runoff model, rainfall and runoff observations, and remote

sensing data. Then we describe the applied methods, land-use

classification, surface runoff and in-sewer flow modelling,

as well as the suggested performance criteria. Finally we

present results and discuss the potential and limitations of

using UAV images in urban hydrology.

2 Materials and methods

2.1 Case study and data sets

2.1.1 Case study

For our case study we used a residential area, called the

Wartegg catchment, in the city of Lucerne, Switzerland (see

Fig. 2). The catchment covers about 77 ha and is home

for 6900 residents. It is typical of many suburban areas in

Switzerland: high- to moderate-density population, and scat-

tered single- to two-story housing embedded in a hilly land-

scape, including typical public infrastructure such as shop-

ping centres and sports grounds.

Stormwater and wastewater are drained by separate and

combined sewers (see Fig. 2) with a total length of 11.2 km.

An overflow structure connected to a small storage basin is

installed to avoid hydraulic overload in case of heavy rainfall.

Excess combined sewage is directly discharged to the lake;

the carry-on flow travels by gravity to the wastewater treat-

ment works. Three small creeks, to some extent culverted,

cross the catchment and are interlinked with the stormwater

network.

2.1.2 Remote sensing data sets

Image data

In this study we used two image data sets. The first im-

age data were acquired by swisstopo3 in June 2013. It is a

part of an aerial orthophoto mosaic (RGB channels) with a

GSD of 0.0625 m, and consists of images acquired during

leaves-on conditions. Although this data set was acquired

on-demand (standard swisstopo orthophotos have a GSD of

3In this paper the “ortho” and “orthophoto” terms will be used

interchangeably with swisstopo imagery.
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Figure 2. Case study catchment area situated in Lucerne.

0.25 m), images acquired by swisstopo are publicly available,

and this data source is, to our best knowledge, the standard

for hydrological applications in Switzerland. Because swis-

stopo offers off-the-shelf image products, which are already

orthorectified and georeferenced, one can avoid costly and

time-consuming pre-processing of raw image data. On the

other hand, image acquisitions are made at most once a year,

usually every third year, and try to alternate between leaves-

on and leaves-off periods (swisstopo, 2010). Thus, it might

happen that one is not able to obtain up-to-date results.

The second data set was acquired with a Canon

IXUS 127 HS digital consumer camera with 16 Mpix sen-

sor, mounted on a fixed-wing micro-UAV platform (Sensefly

eBee; see Sect. S2 in the Supplement for details). The flight

was performed during leaves-off conditions in March 2014.

The custom processing software, which is shipped together

with the UAV (cf. http://www.senseFly.com, based on the

Pix4D technology, cf. http://pix4d.com/products/), was used

to process the images. It is designed for use by non-experts

and is highly automated; user interaction is limited to se-

lecting input images, entering flight parameters (camera

details and GPS/INS data) and measuring ground control

points (GCPs). Orthophotos (RGB channels) generated from

the acquired images have a GSD of 0.10 m. In the case of a

small catchment, as in our study, a main advantage of UAVs,

when compared to manned aircraft with large-format map-

ping cameras, lies in their flexibility in terms of deployment,

and in their low cost. Conducting a standard photogram-

metric flight campaign typically requires days of preparation

and is more dependent on weather conditions. Note though:

micro-UAVs are at present not suitable for large-area map-

ping, because of their low speed and limited battery capacity.

Prior to the classification, both data sets were downsam-

pled to a GSD of 0.25 m in order to make the evaluation

comparable to standard swisstopo imagery available on the

market. Furthermore, this step reduces the time needed for

training the classifier.

Height model

In this study we used two different height models: (i) a DTM

provided by swisstopo (swisstopo, 2014) was used to classify

the swisstopo data set and to derive the catchment slope for

the urban drainage model. This model features a grid size of

2 m, and for the land-use classification it was upsampled to

the resolution of corresponding image data set; (ii) a nDSM4,

created by subtracting a DSM extracted using dense image

matching from a DTM provided by swisstopo, was used to

classify the UAV data set.

2.1.3 Rainfall

Precipitation data were collected from a meteorological sta-

tion located 2 km away from the Wartegg catchment area, op-

erated by the Swiss Meteorological Institute (MeteoSwiss).

Recordings were taken in a 10 min interval using a tipping

bucket rain gauge with a precision of 0.1 mm. Hourly precip-

itation was checked following the quality assurance criteria

of MeteoSwiss. Additional quality checks were carried out to

ensure that the 10 min data are reliable. Spatial rainfall vari-

4A digital terrain model (DTM) represents the bare ground sur-

face; a digital surface model (DSM) represents the surface visible

from the top, including buildings, trees etc.; the normalized digital

surface model (nDSM) is obtained by subtracting the DTM from

the DSM and shows the relative height of non-ground objects over

the ground.
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ability was not considered in the study due to the short dis-

tance between the meteorological station and the study area.

2.1.4 Sewer flow reference data

Two flow data sets were obtained from in-sewer flow moni-

toring located at the outlet of the subcatchment (see Fig. 2).

Over a period of 4 months (17 July 2014 to 18 Novem-

ber 2014) the in-sewer flow was continuously monitored with

two different sensors: (i) an acoustic Doppler flow sensor

(Sigma submerged AV sensor, HACH) – 1 min monitoring

frequency – and (ii) a digital Doppler radar velocity sensor,

along with ultrasonic level-sensing (FLO-DAR, Marsh Mc

Birney) – 15 min monitoring frequency – to provide redun-

dant flow rate information. Correlation analysis between the

two reference signals shows a high agreement and confirms

the solid quality of the data.

2.1.5 Urban drainage model

Urban drainage models are tools to analyse the hydraulic be-

haviour of urban drainage systems, and to support risk analy-

sis of urban flooding and receiving water pollution. Typically,

these models include two main computing modules: the sur-

face runoff (hydrological) and the in-sewer flow (hydraulic)

model. The hydrological model estimates the time and space

distribution of the direct runoff under consideration of initial

precipitation losses (evaporation, wetting losses) and soil in-

filtration for pervious areas. The resulting runoff is then used

as input for the hydraulic model to simulate the pipe flow in

the sewer network.

In the present study we use the freely available Stormwa-

ter Management Model released and constantly developed

by the US Environmental Protection Agency (SWMM, Re-

lease 5.1.006; US-EPA, 2010). SWMM is a widely used and

well-accepted state-of-the-art 1-D dynamic rainfall–runoff

model. We deliberately chose SWMM despite its limita-

tions (lumped surface runoff model concept) as it represents

a widely used standard application in urban drainage mod-

elling, and we wanted to keep the modelling use case as sim-

ple as possible.

The description of the surface runoff is based on the MAN-

NING approach, a simplifying, conceptual formulation of

transport phenomena in the catchment assuming that the sur-

face runoff starts after the rainfall volume has exceeded a

representative value of the initial losses in the catchment.

Rainfall losses are adjusted throughout the rainfall event ac-

cording to the changes occurring in the infiltration process

(pervious part of catchment surface) which is a function of

the soil water saturation level. Impervious surfaces are those

where no infiltration occurs; the catchment’s imperviousness

degree and its spatial distribution are then expected to have

a great impact on surface runoff and urban drainage system

modelling results. Flow routing through a system of sewer

pipes, storage basins and regulating devices is accomplished

by solving the Saint-Venant flow equations, whereas here we

applied a type of diffusive wave approximation which ne-

glects inertial terms from the momentum equation when flow

becomes supercritical.

2.2 Methodology

2.2.1 Classification

Generally, supervised classification consists of three main

steps: (i) extraction of the features from a raw input im-

age, (ii) training the classifier using a small, manually an-

notated training set (not necessarily from the same image),

and (iii) classification of all pixels in the area of interest, us-

ing the classifier trained in the previous step. In the follow-

ing we describe two different types of supervised classifiers:

(i) Gaussian maximum likelihood, and (ii) boosting.

Maximum likelihood

The maximum likelihood (ML) classifier is a popular classi-

fication method in the field of urban hydrology. It is a sim-

ple generative model which assumes that the image features

within each target class follow a normal distribution. Under

this assumption, each of the target classes can be described

by its mean vector and covariance matrix. Given this infor-

mation one can directly compute the statistical probability

of particular pixel belonging to one of the target classes.

A serious limitation of ML is that it is not well suited for

high-dimensional data. Due to the “curse of dimensional-

ity” (Hughes, 1968), its performance degrades typically be-

yond a dozen or so feature dimensions. For imagery with a

medium spatial resolution imagery, where objects are usually

spectrally consistent5, it might be enough to construct im-

age features consisting only of single raw pixel values. How-

ever, the variability of the pixel values within an object class

grows with the spatial resolution of the image, for example,

when a roof consists of many pixels and substructures such

as planted areas or roof gardens become visible. Therefore

one should no longer rely on single pixel values, but has to

consider contextual information and, for example, construct

features that exploit the neighbourhood of a pixel (e.g. tex-

tural features). Such features expand the dimensionality of

data, making generative classifiers inefficient. Here we clas-

sified two image data sets using a maximum likelihood clas-

sifier implemented in ArcGIS software (ESRI, 2013). As of-

ten done in conjunction with the ML method, we use only

the single raw pixel values as features.

Boosting

As an alternative to ML we propose a multiclass extension

(Benbouzid et al., 2012) of adaptive boosting (AdaBoost,

Freund and Schapire, 1995). Unlike ML, boosting methods

5Meaning that they consist of pixels of similar values.
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(and related discriminative classifiers) are better suited for

very high-dimensional feature spaces, as they do not attempt

to model the input data distribution. Boosting greedily learns

an additive combination of many simple classifiers (in our

case shallow decision trees). A useful property of the method

is that it performs explicit feature selection as part of the clas-

sifier training. Thanks to this, we sidestep manual feature se-

lection. Moreover, at test time only the selected features need

to be computed, which significantly reduces the computa-

tional effort. Here, we classified the images using random-

ized quasi-exhaustive (RQE) feature banks (Tokarczyk et al.,

2015), which are able to capture multiscale texture properties

in a pixel’s neighbourhood.

Performance assessment of classification

To assess the performance of the two classifiers used in this

study, we have manually labelled a subset (5 ha) of each of

the image data sets (see Fig. 3). Hence, we were able to re-

port the classification accuracy for all pixels in an extended

area, which in our view is a lot more reliable than sparse,

point-wise accuracy assessment. We selected either three

(rooftops/streets/vegetation) or two (impervious/pervious)

target classes, where in the two-categories case, the “imper-

vious” class is an aggregation of the “rooftos” and “streets”

classes. For the subsequent hydrological analysis, only the

two-class maps were used.

Both classifiers were trained using randomly selected sub-

sets of pixels (1, 2 or 5 %, which correspond roughly to 7000,

14 000 and 36 000 pixels). Thereby we can evaluate how the

size of the training data has an influence on the overall classi-

fication accuracy. If satisfactory results can be obtained, then

a lower number of training samples is preferable, since it re-

duces the training time and saves annotation effort. Similarly

to experiments carried out in Tokarczyk et al. (2015), we

trained the boosting classifier using decision trees with eight

leaf nodes, and set the number of boosting rounds to 500.

As a performance metric for the classification, we used the

overall accuracy (OA), i.e. the fraction of correctly classified

pixels.

2.2.2 Assessing the importance of input data for

surface runoff

To assess the influence of input data accuracy on the sur-

face runoff, we predicted the surface runoff for a rain event

of moderate intensity (total volume of 29.7 mm; peak rain-

fall intensity of 2.9 L s−1). Then, we analysed the runoff of

the 307 individual subcatchments regarding the following at-

tributes: (i) peak flow (Qpeak) and (ii) volume of the peak

(Vpeak). As it is very challenging to directly measure surface

runoff that can be compared with model predictions, we first

performed an exploratory analysis of the major influence fac-

tors. Second, we investigated interactions between the data

Figure 3. The Wartegg area containing 307 subcatchments (red

polygons including blue polygons) overlayed on a topographic map.

The performance of classifiers was assessed on a subset depicted in

blue.

source and processing method by means of a regression anal-

ysis (see Sect. S3 in the Supplement for details).

Performance assessment

Exploratory data analysis of surface and surface runoff

characteristics

To summarize the important characteristics of the sur-

face runoff, we visualized important aspects using boxplots

and scatterplots (see Fig. 6). The main research questions

were the following:

– Which differences in imperviousness (1Imp) result for

each subcatchment: (i) for the two data sources and

(ii) for the two classification methods?

– Does the image source have a substantial influence on

the predictions of surface runoff from a subcatchment?

How does this depend on the processing method?

Regression analysis of surface runoff characteristics

To answer the second question, we constructed four re-

gression models with indicator variables (Montgomery et al.,

2012). This makes it possible to consider the individual

effects of the data and the processing method. In addition,

a model with an interaction term, unlike an additive model,

could add a further adjustment for the “interaction” between

the data source and the classification method. Specifically,

we would like to explore whether the relationship between

the image source and the imperviousness in the subcatch-

ments, and their surface runoff characteristics, is different

for each classifier. The model for a dependent variable y is

Hydrol. Earth Syst. Sci., 19, 4215–4228, 2015 www.hydrol-earth-syst-sci.net/19/4215/2015/
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yi = β0+β1I
Data
i +β2I

Method
i +β3I

Data·Method
i + εi, (1)

where yi is the ith observation of the dependent variable,

IData
i an indicator variable which is 1 if yi was computed

from UAV images (UAV) and 0 from orthophotos, and

IMethod
i is an indicator variable which is 1 if yi was com-

puted with the RQE method and 0 for the ML classifier (ML).

β0 . . . β3 are the parameters to be estimated and εi is a

random error term. If εi is normally and independently dis-

tributed, i.e. εi ∼N (0, σ 2), this model is equivalent to a clas-

sical least square regression or to a three-way analysis of

variance model with treatment contrasts (Montgomery and

Runger, 2007).

The imperviousness is bounded between 0 and 1, whereas

a linear model could easily predict values beyond this range,

which is not admissible. To have a more plausible model, we

therefore used a logit-transformation on the imperviousness

(%imp):

z= 2 · arctanh(2 · Imp− 1). (2)

In addition, we analyse the results of this regression analy-

sis on a qualitative basis only. With more correct and more

complex models, which better represent the underlying pro-

cess that generated the data, p values (see Tables S3–S5 in

the Supplement) would tend to be larger. Here, however, we

are not interested in the magnitude or statistical significance

of the individual effect, but we would just like to see whether

they are very different or not.

2.2.3 Prediction of pipe flows

To assess the model’s capability to predict the resulting in-

sewer flow, we predicted stormwater flows at the catchment

outlet for 36 independent rain events of different intensity

and duration (see below) and compared them with flow data

measurements (see Sect. 3.3). In particular, we compared

measured and predicted volume of the total runoff as well

as peak flows. The main driving questions for the analysis

were the following:

– How do differences in imperviousness affect pipe flow

predictions?

– To what extent may differences regarding input data,

i.e. degree of imperviousness of subcatchment areas, be

compensated by the model calibration procedure?

Model calibration

To address the latter question, we compared the results of

the different model implementations prior to and after cali-

bration. For the calibration/validation procedure we split the

reference data set into a calibration (July to September 2014)

and a validation period (September to November 2014). In

total, for both periods, 36 independent rain events of differ-

ent intensity and duration were observed, which we consider

sufficient to cover the inherent variability of rain events.

To analyse the effect of different input data and how

this would be addressed by model calibration, we applied

a genetically adaptive multi-objective calibration algorithm

(AMALGAM, Vrugt and Robinson, 2007) to adjust the cal-

ibration parameters of the four implementations. The model

input (two image data sources× two different classifiers) is

used to derive the “%imp” parameter. In the optimization,

four different calibration parameters were adjusted to match

three objective functions: (i) simulation bias (SB) and Nash–

Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970), (ii) total

flow balance, and (iii) peak flow deviation – all with respect

to the flow at the catchment outlet. The input parameter im-

perviousness “%imp” is derived from orthophotos and is not

subject to calibration. The calibration parameters are

– catchment width (m),

– HORTON maximum infiltration rate (mm day−1),

– decay constant for the HORTON curve (day−1), and

– size of a virtual subcatchment (ha), mimicking ground-

water infiltration into the sewer pipe network.

Performance assessment: flow balance and flow

dynamics

In a first step, we evaluated the match between modelled hy-

drographs and reference flow data using the SB and NSE.

Both goodness-of-fit measures are well established in urban

hydrology to cover deviations regarding the flow balance

(bias) and flow dynamics (NSE). The simulation bias B is

defined as follows:

B =
(
E−M

)2
, (3)

whereas M is the mean of measured (observed) values and

E is the mean of estimated (simulated) values. The bias

ranges from−∞ until+∞with an optimum at 0. The Nash–

Sutcliffe efficiency NSE is defined as

NSE= 1−

N∑
i=1

|Mi −Ei |
2

N∑
i=1

∣∣Mi −M
∣∣2 , (4)

whereas Mi is the measured (observed) and Ei is the sim-

ulated value at the time i, M is the mean of measured (ob-

served) values, E is the mean of estimated (simulated) val-

ues, and N the number of paired data. NSE reaches 0 when

the square of the differences between measured and esti-

mated values is as large as the variability in the measured

data. In case of negative NSE values the measured mean is a

better predictor than the model.

www.hydrol-earth-syst-sci.net/19/4215/2015/ Hydrol. Earth Syst. Sci., 19, 4215–4228, 2015



4222 P. Tokarczyk et al.: Enabling high-quality observations of surface imperviousness for water runoff modelling

Table 1. RQE vs. ML method: overall classification accuracies (in

%). Boosting with RQE features after 500 iterations. Maximum

likelihood classifier was trained with features consisting of single

raw pixel intensities (all spectral channels).

UAV Orthophoto

Class. method/ 1 % 2 % 5 % 1 % 2 % 5 %

% of train data

Three classes

ML 78.9 72.8 78.4 84.2 84.4 80.8

RQE 93.7 94.3 95.2 95.6 95. 8 96.3

Two classes

ML 87.7 81.6 84.3 90.9 90.8 88.4

RQE 95.5 95.6 96.2 96.6 97.0 97.4

To cover one of the key figures relevant for engineering

urban drainage systems, we included an event-specific eval-

uation of peak flows in a second evaluation step. To this

end, we extracted peak flows from observed and modelled

hydrographs using an event filter that identifies independent

rainfall–runoff events preceding a dry weather period by at

least 6 h.

3 Results

3.1 Classification

Table 1 presents per-pixel overall classification accuracy

achieved using (i) two different data sets, (ii) two classifi-

cation methods, and (iii) either two or three target classes.

Figures 4 and 5 present visual classification results for a sub-

set of each of the two data sets, together with a respective

ground truth. We did not perform any pre- or post-processing

of the data. Image pre-processing adds no information and

typically does not help, except for physically meaningful re-

flectance calibration, which in our setting was not feasible.

Post-processing of the imperviousness map might improve

overall accuracy, but carries the danger of introducing un-

wanted biases.

3.2 Prediction of surface runoff

3.2.1 Exploratory analysis

We used boxplots and scatterplots to investigate the effect of

combining two data sources and two processing methods on

(i) the imperviousness and the surface runoff characteristics,

(ii) peak flows, and (iii) runoff volumes (see Fig. 6).

– Imperviousness (Imp): the boxplot shows that the over-

all distributions of imperviousness for 307 subcatch-

ments do not differ much across the different image

sources and classification methods. In general, the UAV

images seem to produce slightly lower values of im-

perviousness than the orthophoto, although this effect

might also be dominated by the set of UAV image which

was processed by the ML classifier. Regarding the clas-

sification methods, the boosting classification method

delivers slightly larger imperviousness values for both

data sources than the ML method.

– Peak runoff (Peak): like for the imperviousness, the dif-

ferent image sources lead to very similar peak runoff

values. In general, boosting leads to slightly higher peak

flows, which also have a larger variance and slightly

higher extreme values for a couple of subcatchments.

Regarding the suitability of UAV images in rainfall–

runoff modelling, there are no relevant differences be-

tween the image sources.

– Runoff volumes (Volume): the exploratory analysis ef-

fectively suggests the same patterns for the runoff vol-

ume as for the peak flows: boosting leads to larger

runoff volumes and the resulting variability of the rain-

fall runoff from the 307 subcatchments is slightly larger

than for the ML classifier. Also, the UAV data seem to

be associated with smaller runoff volumes. This is con-

sistent, as this relates to the lower degree of impervious-

ness in the subcatchments.

In general, the relative differences between the different al-

ternatives are very small, with average values of a few per-

cent (see Fig. 6). For the imperviousness, there are only a few

subcatchments which show rather large differences. These

are even less relevant for the peak runoff and runoff volumes.

Furthermore, the scatterplots of the different explanatory

and dependent variables suggest that there is not a substan-

tial difference between the image sources or classification ap-

proaches for the modelled surface runoff in the different sub-

catchments (see Fig. S1 in the Supplement). For the boosting

classifier, we observe a weak positive correlation with the

degree of imperviousness (see Fig. S2 in the Supplement),

which means that catchments which are rather impervious

(or pervious) based on the ML classifier tend to be even more

impervious (or pervious) for the boosting classifier. However,

this is difficult to identify by means of visual analysis and is

better explored by an analysis of variance or regression anal-

ysis.

3.2.2 Regression analysis

The results from the regression analysis are mainly the max-

imum likelihood estimates of the model parameters and an

indicator of their importance (see Tables S3 and S4 in the

Supplement).

For the imperviousness, as expected neither the image

source nor the classifier is strongly correlated. The negative

sign of the estimated slope parameter for the image source

(β1=−0.16) suggests that UAV images generally go to-
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Figure 4. Cutouts of the swisstopo image: original image, manually labelled ground truth, and classification results using ML and RQE (two

and three classes). In the case of two classes, impervious surfaces are black and pervious are green. In the case of three classes, rooftops are

black, streets/sidewalks are grey and vegetation is green.

Figure 5. Cutouts of the UAV image: original image, manually labelled ground truth, and classification results using ML and RQE (two and

three classes). In the case of two classes, impervious surfaces are black and pervious are green. In the case of three classes, rooftops are

black, streets/sidewalks are grey and vegetation is green.

gether with a lower imperviousness. In addition, the influ-

ence of the image source seems to be larger than that of the

classification method (β2= 0.003), although the large p val-

ues for all parameters suggest that it is not very likely that the

observed values of imperviousness were to have occurred un-

der the given statistical model. Therefore, there is virtually no

evidence that there are interactions between the image source

and the classifiers.

For the peak runoff, neither the image source nor the clas-

sifier are strongly correlated. The negative sign of the esti-

mated slope parameter for the image source (β1=−0.6) sug-

gests that UAV images correlate with a smaller peaks. Here,

the influence of the image source seems to be equally im-

portant as the classification method (β2=−0.6), just with a

different sign. Nevertheless, the high p values for all param-

eters again suggest that it is not very likely that the observed

values of imperviousness were to have occurred under the

given statistical model. Also, the interaction between the im-

age sources and classifiers is not important.

For the runoff volume, the UAV data generally seem to be

correlated with slightly lower runoff volumes (β1=−302),

whereas the RQE method shows a positive correlation

(β2= 298). Again, neither the two effects nor their interac-

tion seem to be important.
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Figure 6. Boxplots of the imperviousness and surface runoff char-

acteristics (Imp (–), Peak (L s−1), Volume (m3)) for the 307 sub-

catchments for the four combinations of data sources and processing

methods. Black=Ortho, red=UAV, green=ML, and blue=RQE.

In summary, the analysis suggests that surface runoffs pre-

dicted with SWMM are similar for the different data sources

or classifiers. In addition, neither the imperviousness nor

peaks nor volumes of the runoff are influenced by interac-

tions between the image sources and the classification meth-

ods. As the data source and classifier alone do not repre-

sent the data generating process, the underlying statistical as-

sumptions are not met and the numerical results should not

be over-interpreted.

3.3 Prediction of in-sewer flow

The evaluation regarding sewer pipe flow is split into two

parts: (1) model performance of uncalibrated implementa-

tions, and (2) calibrated implementations compared to ref-

erence data, i.e. flow measured at the outlet of the catchment.

1. Focusing on the results prior to calibration, it becomes

clear that uncalibrated models, among each other, differ

particularly regarding the peak flow performance (see

boxplot in Fig. 7). This clearly corresponds to the find-

ings of the surface runoff analysis (see Sect. 3.2) in

which, for instance the implementation “UAV ML” with

the lowest mean degree of imperviousness produces the

lowest runoff peaks. The comparison with reference

data through hydrological goodness-of-fit measures (see

Table 2) underlines the moderate performance regard-

ing flow dynamics (NSE), whereas already good agree-

ment is achieved for the total flow balance (bias). The

slightly improved performance of the implementation

of which the imperviousness is derived from UAV data

classified with the ML method (UAV ML) probably oc-

curs by chance.

Table 2. Goodness-of-fit measures prior to and after calibration

(both quantified for the validation period).

Prior to After

calibration calibration

SB (−)/ SB (−)/

NSE (−) NSE (−)

Ortho ML 2.0/0.54 3.16× 10−5/0.72

Ortho RQE 2.0/0.52 0.007/0.71

UAV ML 0.3/0.62 0.1/0.75

UAV RQE 2.0/0.53 1.38/0.73

2. Results from calibrated models (see Fig. 8 and Table 2,

right column) show that conducting a detailed calibra-

tion, as expected, leads to an improved model perfor-

mance (NSE increase, bias reduction) and interestingly

smooths out the land-use differences among the four im-

plementations. This is visible in Fig. 8, where the hydro-

graphs are practically the same. Even though the results

from the UAV ML implementation after calibration still

shows slightly different results (see Fig. 8, right panel),

the differences in peak flow for the 13 most intense rain

events are very similar (see Fig. 9).

Interestingly, the very similar performance is achieved

with very different parameter estimates (see Fig. S6 in

the Supplement). Particularly the parameter “width”,

“maximum infiltration rate” and “Decay K” (influenc-

ing the peak flow) vary substantially. Results show

that the calibrated runoff model should be fairly robust

against variations of the perviousness map, since these

can be compensated by changing other, more uncertain

parameters, e.g. by different parameters defining the in-

filtration into pervious surfaces.

4 Discussion

4.1 Classification

In order to fully exploit the advantages coming with high

spatial resolution of an image, one has to use the classifica-

tion method tailored to the characteristics of a data set. Thus,

the choice of the classifier has a substantial impact on the

overall classification accuracy. While boosting achieves ac-

curacies between 93.7 and 96.2 % for the UAV data set and

95.6 to 97.4 % for the swisstopo data set, maximum likeli-

hood yields results which are up to 20 % worse. Furthermore,

it can be seen that the number of target classes strongly in-

fluences the results of the ML method. Classification with

three target classes is up to 9 % less accurate than with two.

Moreover, the amount of data used to train the ML classifier

gives inconclusive results. By increasing the number of train-

ing samples, overall accuracy should increase. However, in
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Figure 7. Evaluation of peak flows (L s−1) for the 13 most intense

rain events (prior calibration).

our case the training appears to be unstable, and the expected

increase only materializes in a single case (see Table 1, or-

thophoto data set, three classes). A possible explanation is

that the class distribution is not unimodal, and thus not ap-

propriately captured by the Gaussian model.

In contrast to the ML method, the boosting classifier be-

haves in a stable manner. Differences in overall accuracy

do not exceed 2.5 % per data set. The changes in boosting

performance with varying amounts of training data are neg-

ligible: 1 % (7000 pixels) already yield satisfactory results,

i.e. the effort for annotation as well as the training time re-

mains low. The efficiency and robustness of boosting used

together with features appropriate for VHR aerial imagery

makes this approach a good choice for the task. Also, over-

all classification accuracy achieved using a boosting classi-

fier together with UAV-based imagery shows that in terms

of classification accuracy of impervious surfaces, this new

imaging platform gives comparable results to the off-the-

shelf aerial image products.

Moreover, our experiments show that at the level of surface

runoff prediction, the differences between different imag-

ing platforms and between different processing methods are

small. Even though the classification accuracy between data

sets and methods differs by up to 20 %, their influence on sur-

face runoff characteristics lies within only a few percent on

average. We believe that one of the reasons is the spatial size

of our subcatchments. Each of them consists of hundreds of

image pixels, but the hydrological model disregards the spa-

tial information and only uses aggregated values, i.e. the sum

of all impervious pixels belonging to one subcatchment. A

further observation is that the differences in classification ac-

curacy are much larger for the three-class case. This is in line

with conventional machine learning wisdom (“only predict

what you need to know”); however, we have not yet con-

structed an end-to-end study with the three-class result as an

input.

4.2 Prediction of surface runoff

4.2.1 Exploratory analysis of surface runoff

While there are substantial differences when the images are

compared pixel-by-pixel (see Figs. 4 and 5), these are largely

lost for the predicted surface runoff. In our view, this is again

explained by the SWMM surface runoff model. It is a lumped

model, which aggregates the pixels and thus smoothes out the

differences already on this small scale. This tendency will

be even more pronounced for a higher degree of spatial ag-

gregation, e.g. when modelling larger urban areas, where the

subcatchments equipped with flow measurements will also

be larger. Future experiments that investigate the continuous

spatial downsampling of images may reveal when differences

fully disappear.

4.2.2 Model structure as a bottleneck?

Obvious differences in the input data may be smoothed out

due to the simplified, conceptual representation of the sur-

face runoff in SWMM. We do expect different results for

more detailed representation of land use, e.g. with a separate

“roof” land-use or modern pixel-based modelling approaches

for surface runoff. In the future, this might be even more im-

portant considering the increasing popularity of coupled 2-D-

overland/1-D-channel flow models including more detailed

overland-flow modelling using raster/pixel-based approaches

(cf. Leandro et al., 2009). Traditional models – as currently

used in day-to-day engineering practice – will probably never

be able to fully make use the amount of detail (pixel basis)

provided by such aerial images.

4.2.3 High-resolution images provide added value in

urban drainage

The effect on surface runoff and pipe hydraulics using spa-

tially aggregating models (two land-use classes) may not be

as immense. However, in future investigations, models that

allow differentiating between three or more land-use classes

should be further investigated. This may be particularly rele-

vant for pollutant load modelling, for which detail, accuracy

and actuality of land-use characteristics are highly influen-

tial. Relevance of input data accuracy may even further in-

crease due to the fact that obtaining adequate pollution load

reference data is considered to be very difficult (cf. Dotto

et al., 2014).

Also, other urban drainage tasks would greatly bene-

fit from detailed land-use maps, e.g. precise and justified

stormwater fees due to exactly delineated types of impervi-

ous areas (cf. Figs. 4 and 5). An improved feature (gully pots,

sewer inlets, curbstone structures) identification is expected

www.hydrol-earth-syst-sci.net/19/4215/2015/ Hydrol. Earth Syst. Sci., 19, 4215–4228, 2015



4226 P. Tokarczyk et al.: Enabling high-quality observations of surface imperviousness for water runoff modelling

Figure 8. Observed reference and simulations (prior calibration) for the full validation period September to November 2014 (left panels) and

a selected event on 11 October 2014 (right panels).

Figure 9. Evaluation of the peak flows for the 13 most intense rain

events in the validation period (after calibration).

to further provide valuable input data for network generation

approaches (e.g. as outlined in Blumensaat et al., 2012) and

the coupled 2-D surface runoff/1-D pipe flow model applica-

tions. For this, the RQE method seems to be most promising,

although for the runoff analysis, a simpler method still seems

to produce robust results.

The possibility of on-demand image acquisitions through

UAV flights allows almost instantaneous response to land-

use developments in dynamic urban environments. As land

use changes become increasingly evident, keeping hydrolog-

ical models up-to-date appears to be a key to effectively re-

duce the risk of urban flooding. We consider the flexibility

of collecting high-quality images at almost any time (“on-

demand”) for spatially pre-defined urban areas of manage-

able size as clear benefit, also with regard to cost efficiency.

4.3 Pipe flow predictions

The results from the model calibration show that input data

deviations are nearly fully compensated by the calibration

procedure, involving an adaption of four different calibration

parameter sets. The analysis of the final calibration param-

eter values however reveals that the best fit for each of the

implementations is achieved by differing parameter sets (see

Fig. S6 in the Supplement). On the one hand side, this may

indicate that, even though the full range of a priori defined

parameter ranges is used during the auto-calibration proce-

dure, for each implementation a different (local) optimum

in the Pareto front is identified. On the other hand, it may

underline that the given model structure is flexible enough

to address different model inputs through different parame-

ter settings. Here, it becomes clear that the compensation is

achieved by adjusting parameters in a way that involves the

risk that some parameters loose its physically based origin

and turn into “conceptual handles”. The discussion on this

particular question is certainly interesting and would need

further analyses, but it cannot be accomplished in this paper

contribution as it would blur the main focus of the paper.

5 Conclusions

In this study we investigated the possibility to automatically

generate high-resolution imperviousness maps for urban ar-

eas from imagery acquired with UAVs, and for the first time

assessed the potential of UAVs for high-resolution hydrologi-

cal applications compared with a standard large-format aerial

orthophotos. We proposed an automatic processing pipeline

with modern classification methods to extract accurate im-

perviousness maps from high resolution aerial images, and

presented an end-to-end comparison, in which the maps ob-

tained from different sources and processed with different

classification methods were used as input for urban drainage

models.
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The first part of our analysis indicates that, using a boost-

ing classifier in conjunction with RQE features, we were

able to classify UAV imagery with an accuracy compara-

ble to standard aerial orthophotos. The proposed classifica-

tion method yields more stable results, when compared with

those produced using the maximum likelihood method. This

improvement is even more apparent when classifying three

instead of two classes of land use.

In the second part of our analysis we have demonstrated

how model input data variations propagate in the course

of the urban drainage modelling exercise, and how this is

reflected in the surface runoff and sewer flow predictions.

Results from uncalibrated model implementations actually

show deviations in the predictions, which can be explained

by input data variations. But still predictions are inaccurate.

Conversely, after calibration the performance analysis shows

that the calibration process attenuates variations in the in-

put data, suggesting that model predictions are insensitive

to these variations. However, the analysis of the resulting

model parameter settings also reveals that apparent robust-

ness is achieved by tweaking the parameter in a way which

involves the risk of leaving valid parameter ranges.

Because model development and calibration in everyday

practice is often based on less accurate information than used

in our case study, it is important to underline reliable input

data to reduce overall uncertainty in model predictions.

We note that the conclusions of the study are limited re-

garding (i) the small size of the case study catchment, (ii) the

degree of detail in which the catchment has been described

(more detail may show a more pronounced input error prop-

agation, a more lumped description may absorb input devia-

tions from the start), and (iii) the type of hydrological mod-

elling concept used. Therefore we suggest conducting further

research to evaluate the impact of the spatial scale, i.e. the de-

gree of spatial aggregation linked to the hydrological model

approach (ensemble modelling). In the case study presented

here we chose a traditional and widely used urban drainage

model (EPA SWMM) to deliberately demonstrate the effect

of new image sources and processing methods for standard

engineering practice.

Still, we suggest using imperviousness maps consisting of

three land-use classes as more differentiated input for a more

detailed hydrological model, i.e. a pollution load model,

which makes better use of urban land-use differentiation. Be-

cause the proposed boosting classifier showed the largest ac-

curacy gain for a three-class case, we strongly believe that

introducing this additional information more clearly shows

the potential of UAV data sets and advanced classification

methods for more accurate urban drainage and pollution load

modelling.

The Supplement related to this article is available online

at doi:10.5194/hess-19-4215-2015-supplement.
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