Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-4951-2014
https://doi.org/10.5194/hess-18-4951-2014
Research article
 | 
09 Dec 2014
Research article |  | 09 Dec 2014

Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (04 Oct 2014) by Przemyslaw Wachniew
AR by Alex Atkinson on behalf of the Authors (24 Oct 2014)  Author's response   Manuscript 
ED: Publish subject to technical corrections (09 Nov 2014) by Przemyslaw Wachniew
AR by Alex Atkinson on behalf of the Authors (10 Nov 2014)  Manuscript 
Download
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.