Articles | Volume 18, issue 7
https://doi.org/10.5194/hess-18-2503-2014
https://doi.org/10.5194/hess-18-2503-2014
Research article
 | 
04 Jul 2014
Research article |  | 04 Jul 2014

Kalman filters for assimilating near-surface observations into the Richards equation – Part 1: Retrieving state profiles with linear and nonlinear numerical schemes

G. B. Chirico, H. Medina, and N. Romano

Related authors

A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015,https://doi.org/10.5194/piahs-370-89-2015, 2015
Kalman filters for assimilating near-surface observations into the Richards equation – Part 2: A dual filter approach for simultaneous retrieval of states and parameters
H. Medina, N. Romano, and G. B. Chirico
Hydrol. Earth Syst. Sci., 18, 2521–2541, https://doi.org/10.5194/hess-18-2521-2014,https://doi.org/10.5194/hess-18-2521-2014, 2014
Kalman filters for assimilating near-surface observations into the Richards equation – Part 3: Retrieving states and parameters from laboratory evaporation experiments
H. Medina, N. Romano, and G. B. Chirico
Hydrol. Earth Syst. Sci., 18, 2543–2557, https://doi.org/10.5194/hess-18-2543-2014,https://doi.org/10.5194/hess-18-2543-2014, 2014
Impact of modellers' decisions on hydrological a priori predictions
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014,https://doi.org/10.5194/hess-18-2065-2014, 2014

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Stochastic approaches
Detecting hydrological connectivity using causal inference from time series: synthetic and real karstic case studies
Damien Delforge, Olivier de Viron, Marnik Vanclooster, Michel Van Camp, and Arnaud Watlet
Hydrol. Earth Syst. Sci., 26, 2181–2199, https://doi.org/10.5194/hess-26-2181-2022,https://doi.org/10.5194/hess-26-2181-2022, 2022
Short summary
Covariance resampling for particle filter – state and parameter estimation for soil hydrology
Daniel Berg, Hannes H. Bauser, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 1163–1178, https://doi.org/10.5194/hess-23-1163-2019,https://doi.org/10.5194/hess-23-1163-2019, 2019
Short summary
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017,https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017,https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017,https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary

Cited articles

Camporese, M., Paniconi, C., Putti, M., and Salandin, P.: Ensemble Kalman filter data assimilation for a process based catchment scale model of surface and subsurface flow, Water Resour. Res., 45, W10421, https://doi.org/10.1029/2008WR007031, 2009.
Celia, M. A., Bououtas, E. T., and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 1483–1496, 1990.
Chirico, G. B., Medina, H., and Romano, N.: Functional evaluation of PTF prediction uncertainty: An application at hillslope scale, Geoderma, 155, 193–202, 2010.
Clark, M., Rupp, D., Woods, R., Zheng, X., Ibbitt, R., Slater, A., Schmidt, J., and Uddstrom, M.: Hydrological data assimilation with the ensemble Kalman filter: use ofstreamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008.
Das, N. N. and Mohanty, B. P.: Root zone soil moisture assessment using remote sensing and vadose zone modeling, Vadose Zone J., 5, 296–307, 2006.