Research article 07 Nov 2013
Research article | 07 Nov 2013
Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology
J. S. Deems et al.
Related authors
No articles found.
Chandan Sarangi, Yun Qian, Karl Rittger, Kathryn J. Bormann, Ying Liu, Hailong Wang, Hui Wan, Guangxing Lin, and Thomas H. Painter
Atmos. Chem. Phys., 19, 7105–7128, https://doi.org/10.5194/acp-19-7105-2019, https://doi.org/10.5194/acp-19-7105-2019, 2019
Short summary
Short summary
Radiative forcing induced by deposition of light-absorbing particles (LAPs) on snow is an important surface forcing. Here, we have used high-resolution WRF-Chem (coupled with online snow–LAP–radiation model) simulations for 2013–2014 to estimate the spatial variation in LAP-induced snow albedo darkening effect in high-mountain Asia. Significant improvement in simulated LAP–snow properties with use of a higher spatial resolution for the same model configuration is illustrated over this region.
Felix C. Seidel, Karl Rittger, S. McKenzie Skiles, Noah P. Molotch, and Thomas H. Painter
The Cryosphere, 10, 1229–1244, https://doi.org/10.5194/tc-10-1229-2016, https://doi.org/10.5194/tc-10-1229-2016, 2016
Short summary
Short summary
Quantifying the snow albedo effect is an important step to predict water availability as well as changes in climate and sea level. We use imaging spectroscopy to determine optical properties of mountain snow. We find an inverse relationship between snow albedo and grain size as well as between elevation and grain size. Under strong melt conditions, however, we show that the optical-equivalent snow grain size increases slower than expected at lower elevations and we explain possible reasons.
S. Kaspari, T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski
Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, https://doi.org/10.5194/acp-14-8089-2014, 2014
E. A. Sproles, A. W. Nolin, K. Rittger, and T. H. Painter
Hydrol. Earth Syst. Sci., 17, 2581–2597, https://doi.org/10.5194/hess-17-2581-2013, https://doi.org/10.5194/hess-17-2581-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A novel method for cold-region streamflow hydrograph separation using GRACE satellite observations
A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments
Projected changes in Rhine River flood seasonality under global warming
Technical note: Diagnostic efficiency – specific evaluation of model performance
How catchment characteristics influence hydrological pathways and travel times in a boreal landscape
Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
User-oriented hydrological indices for early warning systems with validation using post-event surveys: flood case studies in the Central Apennine District
Space–time variability in soil moisture droughts in the Himalayan region
A multi-sourced assessment of the spatiotemporal dynamics of soil moisture in the MARINE flash flood model
Climate change impacts model parameter sensitivity – implications for calibration strategy and model diagnostic evaluation
The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau
Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm-event timescale
Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
Irrigation, damming, and streamflow fluctuations of the Yellow River
Behind the scenes of streamflow model performance
Learning from satellite observations: increased understanding of catchment processes through stepwise model improvement
Diagnosis toward predicting mean annual runoff in ungauged basins
The era of infiltration
A time-varying parameter estimation approach using split-sample calibration based on dynamic programming
Timing and magnitude of future annual runoff extremes in contrasting Alpine catchments in Austria
A history of TOPMODEL
Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile
A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions
The role and value of distributed precipitation data in hydrological models
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Flexible vector-based spatial configurations in land models
Performance of automated flood inundation mapping methods in a context of flash floods: a comparison of three methods based either on the Height Above Nearest Drainage (HAND) concept, or on 1D/2D shallow water equations
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
A new fractal-theory-based criterion for hydrological model calibration
Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: the role of nested catchments and gauging station density
Machine Learning Deciphers CO2 Sequestration and Subsurface Flowpaths from Stream Chemistry
Which rainfall score is more informative about the performance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Future streamflow regime changes in the United States: assessment using functional classification
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?
Sensitivity of meteorological-forcing resolution on hydrologic variables
Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region
Evaluation of Random Forest for short-term daily streamflow forecast in rainfall and snowmelt driven watersheds
Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario
Shusen Wang, Junhua Li, and Hazen A. J. Russell
Hydrol. Earth Syst. Sci., 25, 2649–2662, https://doi.org/10.5194/hess-25-2649-2021, https://doi.org/10.5194/hess-25-2649-2021, 2021
Short summary
Short summary
Separating river flow into baseflow and surface runoff provides useful information for hydrology and climate studies, but traditional methods have critical limitations in the lack of physics, identifying snowmelt runoff and watershed size. This study developed a novel model using the GRACE satellite observations to address these limitations. It also includes estimates for watershed hydraulic conductivity and drainable water storage, which help assess aquifer properties and water resources.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Short summary
The mesoscale hydrological model (mHM) forced with an ensemble of climate projection scenarios was used to assess potential future changes in flood seasonality in the Rhine River basin. Results indicate that future changes in flood characteristics are controlled by increases in precipitation sums and diminishing snowpacks. The decreases in snowmelt can counterbalance increasing precipitation, resulting in only small and transient changes in streamflow maxima.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Nearing, Jimmy Lin, and Sepp Hochreiter
Hydrol. Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021, https://doi.org/10.5194/hess-25-2045-2021, 2021
Short summary
Short summary
We present multi-timescale Short-Term Memory (MTS-LSTM), a machine learning approach that predicts discharge at multiple timescales within one model. MTS-LSTM is significantly more accurate than the US National Water Model and computationally more efficient than an individual LSTM model per timescale. Further, MTS-LSTM can process different input variables at different timescales, which is important as the lead time of meteorological forecasts often depends on their temporal resolution.
Annalina Lombardi, Valentina Colaiuda, Marco Verdecchia, and Barbara Tomassetti
Hydrol. Earth Syst. Sci., 25, 1969–1992, https://doi.org/10.5194/hess-25-1969-2021, https://doi.org/10.5194/hess-25-1969-2021, 2021
Short summary
Short summary
The paper presents a modelling approach for the assessment of extremes in the hydrological cycle at a multi-catchment scale. It describes two new hydrological stress indices, innovative instruments that could be used by Civil Protection operators, for flood mapping in early warning systems. The main advantage in using the proposed indices is the possibility of displaying hydrological-stress information over any geographical domain.
Santosh Nepal, Saurav Pradhananga, Narayan Kumar Shrestha, Sven Kralisch, Jayandra P. Shrestha, and Manfred Fink
Hydrol. Earth Syst. Sci., 25, 1761–1783, https://doi.org/10.5194/hess-25-1761-2021, https://doi.org/10.5194/hess-25-1761-2021, 2021
Short summary
Short summary
This paper examines soil moisture drought in the central Himalayan region by applying a process-based hydrological model. Our results suggest that both the occurrence and severity of droughts have increased over the last 3 decades, especially in the winter and
pre-monsoon seasons. The insights provided into the frequency, spatial coverage, and severity of the drought conditions can provide valuable inputs towards improved management of water resources and greater agricultural productivity.
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021, https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long-term predictions of river flow as a consequence of climate change. We investigated this using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-134, https://doi.org/10.5194/hess-2021-134, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung River on the Tibetan Plateau. The model was used to quantify the contribution of runoff component, and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
Martin Le Mesnil, Roger Moussa, Jean-Baptiste Charlier, and Yvan Caballero
Hydrol. Earth Syst. Sci., 25, 1259–1282, https://doi.org/10.5194/hess-25-1259-2021, https://doi.org/10.5194/hess-25-1259-2021, 2021
Short summary
Short summary
We present an innovative approach consisting of the statistical analysis and comparison of 15 hydrological descriptors, characterizing catchment response to rainfall events. The distribution of these descriptors is analysed according to the occurrence of karst areas inside 108 catchments. It shows that karst impacts on storm events mainly result in river losses and that interbasin groundwater flows can represent a significant part of the catchment water budget ah the event timescale.
Claudia Voigt, Daniel Herwartz, Cristina Dorador, and Michael Staubwasser
Hydrol. Earth Syst. Sci., 25, 1211–1228, https://doi.org/10.5194/hess-25-1211-2021, https://doi.org/10.5194/hess-25-1211-2021, 2021
Short summary
Short summary
Evaporation trends in the stable isotope composition (18O/16O, 17O/16O, 2H/1H) of throughflow ponds in a hydrologically complex and seasonally dynamic lake system can be reliably predicted by the classic Craig–Gordon isotope evaporation model. We demonstrate that the novel 17O-excess parameter is capable of resolving different types of evaporation with and without recharge and of identifying mixing processes that cannot be resolved using the classic δ2H–δ18O system alone.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, https://doi.org/10.5194/hess-25-957-2021, 2021
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data. For large river basins, this often results in poor representations of system internal processes. This study explores the combined use of satellite-based evaporation and total water storage data for model structural improvement and spatial–temporal model calibration for a large, semi-arid and data-scarce river system.
Yuan Gao, Lili Yao, Ni-Bin Chang, and Dingbao Wang
Hydrol. Earth Syst. Sci., 25, 945–956, https://doi.org/10.5194/hess-25-945-2021, https://doi.org/10.5194/hess-25-945-2021, 2021
Short summary
Short summary
Mean annual runoff prediction is of great interest but still poses a challenge in ungauged basins. The purpose of this study is to diagnose the data requirement for predicting mean annual runoff in ungauged basins based on a water balance model, in which the effects of climate variability are explicitly represented. The performance of predicting mean annual runoff can be improved by employing better estimation of soil water storage capacity including the effects of soil, topography, and bedrock.
Keith Beven
Hydrol. Earth Syst. Sci., 25, 851–866, https://doi.org/10.5194/hess-25-851-2021, https://doi.org/10.5194/hess-25-851-2021, 2021
Short summary
Short summary
Inspired by a quotation from Howard Cook in 1946, this paper traces the evolution of the infiltration theory of runoff from the work of Robert Horton and LeRoy Sherman in the 1930s to the early digital computer models of the 1970s and 1980s. Reconsideration of the perceptual model for many catchments, partly as a result of the greater appreciation of the contribution of subsurface flows to the hydrograph indicated by tracer studies, suggests a reconsideration of hydrological nomenclature.
Xiaojing Zhang and Pan Liu
Hydrol. Earth Syst. Sci., 25, 711–733, https://doi.org/10.5194/hess-25-711-2021, https://doi.org/10.5194/hess-25-711-2021, 2021
Short summary
Short summary
Rainfall–runoff models are useful tools for streamflow simulation. However, efforts are needed to investigate how their parameters vary in response to climate changes and human activities. Thus, this study proposes a new method for estimating time-varying parameters, by considering both simulation accuracy and parameter continuity. The results show the proposed method is effective for identifying temporal variations of parameters and can simultaneously provide good streamflow simulation.
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-92, https://doi.org/10.5194/hess-2021-92, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
This study investigates the effects of climate change on runoff patterns in six alpine catchments in Austria at the end of the 21st century. Our results indicate a substantial shift to earlier occurrences in annual maximum and minimum flows in high-elevation catchments. Magnitudes of annual extremes are projected to increase under a moderate emission scenario in all catchments. Changes are generally more pronounced for high-elevation catchments.
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020, https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-597, https://doi.org/10.5194/hess-2020-597, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Automated flood inundation mapping methods can be of great help for a comprehensive identification of flash-flood related risks spread over large territories, and mainly caused by small upstream watercourses. A comparison of three mapping methods of increasing level of complexity is presented here, based on three actually observed flash-floods. The results illustrate the overall satisfactory performance of these methods, and the added value of using a 2D hydraulic approach (2D Floodos model).
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020, https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Short summary
A two-stage variational mode decomposition and support vector regression is designed to reduce the influence of boundary effects without removing or correcting boundary-affected decompositions. The proposed model significantly reduces the boundary effect consequences, saves modeling time and computation resources, barely overfits the calibration samples, and forecasts monthly runoff reasonably well compared to the benchmark models.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-543, https://doi.org/10.5194/hess-2020-543, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
We think that fractal dimension of streamflow series can be used to improve the calibration of hydrological models. Thus, we designed the E-RD (efficiency-ratio of fractal dimension) strategy and examined its usability in the calibration of lumped model. The results reveal that, from most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Besides, in calibration, only little decrease of E occurs when pursuing better RD.
Mattia Neri, Juraj Parajka, and Elena Toth
Hydrol. Earth Syst. Sci., 24, 5149–5171, https://doi.org/10.5194/hess-24-5149-2020, https://doi.org/10.5194/hess-24-5149-2020, 2020
Short summary
Short summary
One of the most informative ways to gain information on ungauged river sections is through the implementation of a rainfall-runoff model, exploiting the information collected in gauged catchments in the study area. This study analyses how the performances of different model regionalisation approaches are influenced by the informative content of the available regional data set, in order to identify the methods that are more suitable for the data availability in the region.
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-537, https://doi.org/10.5194/hess-2020-537, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
It is often difficult to determine the sources of solutes in streams and how much each source contributes. We developed a new method of unmixing stream chemistry via machine learning. We found that sulfate in three watersheds are related to groundwater flowpaths. Our results emphasize that acid rain reduces a watershed’s capacity to remove CO2 from the atmosphere, a key geological control on climate. Our method will help scientists unmix stream chemistry in watersheds where sources are unknown.
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Short summary
The paper performs the most comprehensive European-scale evaluation to date of satellite rainfall products for river flow prediction. In doing so, how errors transfer from satellite-based rainfall products into flood simulation is investigated in depth and, for the first time, quantitative guidelines on the use of these products for hydrological applications are provided. This result can represent a keystone in the use of satellite rainfall products, especially in data-scarce regions.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020, https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Short summary
This paper investigates the variability of past flooding by applying a numerical model coupled with historical records of regional climate and anthropogenic activity under the deficiency of observations. We conclude that trends in flooding frequency were predominantly modulated by the intensity and frequency of extreme rainfall events, which highlights the need for the implementation of effective river engineering measures to counteract increasing flood risks as a result of the future.
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020, https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Short summary
Snow processes are crucial for runoff in mountainous areas, but their complexity makes water management difficult. Temperature models are widely used as they are simple and do not require much data, but not much thought is usually given to which model to use, which may lead to bad predictions. We studied the impact of many model alternatives and found that a more complex model does not necessarily perform better. Finding which processes are most important in each area is a much better strategy.
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020, https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020, https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
Short summary
Multi-year droughts in Mediterranean climates often see a lower fraction of precipitation allocated to runoff compared to non-drought years. By comparing observed water-balance components with simulations by a hydrologic model (PRMS), we reinterpret these shifts as a hysteretic response of the water budget to climate elasticity of evapotranspiration. Our results point to a general improvement in hydrologic predictions across drought and recovery cycles by including this mechanism.
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Short summary
Streamflow seasonality is changing and expected to further change under the influence of climate change. We here assess how annual streamflow hydrographs will change in future by using a newly developed classification scheme. Our comparison of future with current annual hydrograph classes shows that robust changes are expected only for currently melt-influenced regions in the Rocky Mountains. These upstream changes may require the adaptation of management strategies in downstream regions.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020, https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Short summary
During the Pliocene, the Qaidam Basin on the Tibetan Plateau contained a mega-lake system. During the Pleistocene, it disappeared almost completely. Today, hyperarid climates prevail in the low-altitude parts of the basin. This study reveals that today's mean water balance of the Qaidam Basin is nearly zero and is positive during warmer, less dry years. The results explain how the mega-lake system could survive for a long time in the past and could eventually be restored in the future.
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020, https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Short summary
As frequently used precipitation products, Gauge, CPC, and CHIRPS presented different behaviors in describing precipitation on different spatial and temporal scales, yet these dissimilarities could be concealed in hydrological modeling by parameter calibration and validation. Parameter adjustment in hydrologic modeling, however, would yield different water balance components and thus alter hydrologic mechanisms, demonstrating the complexity in physically describing natural hydrologic processes.
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020, https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Short summary
A modeling tool is developed to assess the vulnerability of coastal wetlands to climatic and water management changes. Applied to the case study of the Gialova lagoon (Greece), this tool highlights the reliance of the lagoon functionality on scarce freshwater sources already under high demand from agriculture. Climatic changes will likely increase lagoon salinity, despite efforts to improve water management.
Doris Duethmann, Günter Blöschl, and Juraj Parajka
Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, https://doi.org/10.5194/hess-24-3493-2020, 2020
Short summary
Short summary
We investigate why a conceptual hydrological model failed to correctly predict observed discharge changes in response to increasing precipitation and air temperature in 156 Austrian catchments. Simulations indicate that poor model performance is related to two problems, namely a model structure that neglects changes in vegetation dynamics and inhomogeneities in precipitation data caused by changes in stations density with time. Other hypotheses did not improve simulated discharge changes.
Fadji Z. Maina, Erica R. Siirila-Woodburn, and Pouya Vahmani
Hydrol. Earth Syst. Sci., 24, 3451–3474, https://doi.org/10.5194/hess-24-3451-2020, https://doi.org/10.5194/hess-24-3451-2020, 2020
Short summary
Short summary
Projecting the changes in water resources under a no-analog future climate requires integrated hydrologic models. However, these models are plagued by several sources of uncertainty. A hydrologic model was forced with various resolutions of meteorological forcing (0.5 to 40.5 km) to assess its sensitivity to these inputs. We show that most hydrologic variables reveal biases that are seasonally and spatially dependent, which can have serious implications for calibration and water management.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
Leo T. Pham, Lifeng Luo, and Andrew O. Finley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-305, https://doi.org/10.5194/hess-2020-305, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Model evaluation metrics suggest RF performs better in snowmelt-driven watersheds. Largest improvement in forecasts, compared to benchmark models, are found among rainfall-driven watersheds. RF performance deteriorates with increase in catchment slope and increase in soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study.
Paolo Nasta, Carolina Allocca, Roberto Deidda, and Nunzio Romano
Hydrol. Earth Syst. Sci., 24, 3211–3227, https://doi.org/10.5194/hess-24-3211-2020, https://doi.org/10.5194/hess-24-3211-2020, 2020
Short summary
Short summary
Rainfall seasonal anomalies in a Mediterranean climate are assessed by using two distinct approaches: a static approach based on the standardized precipitation index and a dynamic approach that identifies the rainy season by considering rainfall magnitude, timing, and duration. The impact of rainfall seasonality on catchment-scale water balance components is evaluated through scenario-based simulations of the Soil Water Assessment Tool in the upper Alento River catchment in southern Italy.
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020, https://doi.org/10.5194/hess-24-3111-2020, 2020
Olivier Champagne, M. Altaf Arain, Martin Leduc, Paulin Coulibaly, and Shawn McKenzie
Hydrol. Earth Syst. Sci., 24, 3077–3096, https://doi.org/10.5194/hess-24-3077-2020, https://doi.org/10.5194/hess-24-3077-2020, 2020
Short summary
Short summary
Using 50 members of one regional climate model and a processed-based hydrological model applied in four river basins in southern Ontario, this work focused on the winter streamflow projection uncertainties for the first half of 21st century. The results show a January–February increase of streamflow for the 50 projections due to early snowmelt and a rainfall increase. The streamflow projections are also modulated by the change of pressure patterns advecting different air masses over the region.
Cited articles
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, 8432, https://doi.org/10.1029/2005WR004387, 2006.
Barnett, T. P. and Pierce, D. W.: Sustainable water deliveries from the Colorado River in a changing climate, P. Natl. Acad. Sci. USA, 106, 7334–7338, https://doi.org/10.1073/pnas.0812762106, 2009.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Belnap, J., Reynolds, R. L., Reheis, M. C., Phillips, S. L., Urban, F. E., and Goldstein, H. L.: Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA, Aeolian Research, 1, 27–43, https://doi.org/10.1016/j.aeolia.2009.03.001, 2009.
Brahney, J., Ballantyne, A. P., Sievers, C., and Neff, J. C.: Increasing Ca2+ deposition in the western US: The role of mineral aerosols, Aeolian Research, 10, 77–87, https://doi.org/10.1016/j.aeolia.2013.04.003, 2013.
Bureau of Reclamation: Colorado River Basin Water Supply and Demand Study, 2011b.
Cayan, D. R., Das, T., Pierce, D. W., Barnett, T. P., Tyree, M., and Gershunov, A.: Future dryness in the southwest US and the hydrology of the early 21st century drought, P. Natl. Acad. Sci. USA, 107, 21271–21276, https://doi.org/10.1073/pnas.0912391107, 2010.
Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417–1434, https://doi.org/10.5194/hess-11-1417-2007, 2007.
Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and Palmer, R. N.: The effects of climate change on the hydrology and water resources of the Colorado River basin, Climatic Change, 62, 337–363, 2004.
Colorado Water Conservation Board: Colorado River Water Availability Study Phase I Report, March 2012.
Dominguez, F., Rivera, E., Lettenmaier, D. P., and Castro, C. L.: Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models, Geophys. Res. Lett., 39, 1–7, https://doi.org/10.1029/2011GL050762, 2012.
Field, J. P., Belnap, J., Breshears, D. D., Neff, J. C., Okin, G. S., Whicker, J. J., Painter, T. H., Ravi, S., Reheis, M. C., and Reynolds, R. L.: The ecology of dust, Front. Ecol. Environ., 8, 423–430, https://doi.org/10.1890/090050, 2010.
Hamlet, A. F., Mote, P. W., Clark, M. P., and Lettenmaier, D. P.: Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western United States, J. Climate, 18, 4545–4561, 2005.
Hamlet, A. F., Mote, P. W., Clark, M. P., and Lettenmaier, D. P.: Twentieth-Century Trends in Runoff, Evapotranspiration, and Soil Moisture in the Western United States*, J. Climate, 20, 1468–1486, https://doi.org/10.1175/JCLI4051.1, 2007.
Knowles, N., Dettinger, M., and Cayan, D. R.: Trends in snowfall versus rainfall in the western United States, J. Climate, 19, 4545–4559, 2006.
Lawrence, C. R. and Neff, J. C.: The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition, Chem. Geol., 267, 46–63, https://doi.org/10.1016/j.chemgeo.2009.02.005, 2009.
Lawrence, C. R., Painter, T. H., Landry, C. C., and Neff, J. C.: Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States, J. Geophys. Res., 115, 1–15, https://doi.org/10.1029/2009JG001077, 2010.
Liang, X., Lettenmaier, D., and Wood, E.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res, 99, 14415–14428, 1994.
McCabe, G. J. and Wolock, D. M.: Warming may create substantial water supply shortages in the Colorado River basin, Geophys. Res. Lett., 34, L22708, https://doi.org/10.1029/2007GL031764, 2007.
Mote, P. W.: Climate-Driven Variability and Trends in Mountain Snowpack in Western North America*, J. Climate, 19, 6209–6220, https://doi.org/10.1175/JCLI3971.1, 2006.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–49, https://doi.org/10.1175/BAMS-86-1-39, 2005.
Munson, S. M., Belnap, J., and Okin, G. S.: Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau., P. Natl. Acad. Sci. USA, 108, 3854–3859, https://doi.org/10.1073/pnas.1014947108, 2011.
Nakicenvoic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H. H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, 599 pp., 2000.
Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., Overpeck, J. T., Painter, T. H., Lawrence, C. R., and Reynolds, R. L.: Increasing eolian dust deposition in the western United States linked to human activity, Nat. Geosci., 1, 189–195, https://doi.org/10.1038/ngeo133, 2008.
Nijssen, B., Donnell, G., Hamlet, A., and Lettenmaier, D. P.: HYDROLOGIC SENSITIVITY OF GLOBAL RIVERS TO CLIMATE CHANGE, Climatic Change, 50, 143–175, 2001.
Oerlemans, J. and Klok, E.: Energy Balance of a Glacier Surface: Analysis of Automatic Weather Station Data from the Morteratschgletscher, Switzerland, Arctic, Antarctic, and Alpine Research, 34, 477–485, 2002.
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, 1–6, https://doi.org/10.1029/2007GL030284, 2007.
Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and Udall, B.: Response of Colorado River runoff to dust radiative forcing in snow, P. Natl. Acad. Sci., 107, 17125–17130, https://doi.org/10.1073/pnas.0913139107, 2010.
Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations, Water Resour. Res., 48, W07521, https://doi.org/10.1029/2012WR011985, 2012a.
Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data, Geophys. Res. Lett., 39, 1–7, https://doi.org/10.1029/2012GL052457, 2012b.
Pierce, D. W., Westerling, A. L., and Oyler, J.: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system, Hydrol. Earth Syst. Sci., 17, 1833–1850, https://doi.org/10.5194/hess-17-1833-2013, 2013.
Rangwala, I., Barsugli, J., Cozzetto, K., Neff, J., and Prairie, J.: Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models, Clim. Dynam., 39, 1823–1840, https://doi.org/10.1007/s00382-011-1282-z, 2012.
Ray, A. J., Barsugli, J. J., and Averyt, K. A.: Climate Change in Colorado Management and Adaptation Climate Change in Colorado Lead Authors Authors, Boulder, CO, 2008.
Reynolds, R. L., Mordecai, J. S., Rosenbaum, J. G., Ketterer, M. E., Walsh, M. K., and Moser, K. A.: Compositional changes in sediments of subalpine lakes, Uinta Mountains (Utah): evidence for the effects of human activity on atmospheric dust inputs, J. Paleolimnol., 44, 161–175, https://doi.org/10.1007/s10933-009-9394-8, 2009.
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., and Naik, N.: Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316, 1181–1184, https://doi.org/10.1126/science.1139601, 2007.
Seager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J., and Liu, H.: Projections of declining surface-water availability for the southwestern United States, Nature Clim. Change, 3, 1–5, https://doi.org/10.1038/nclimate1787, 2012.
Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour. Res., 48, W07522, https://doi.org/10.1029/2012WR011986, 2012.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., 2007.
Steenburgh, W. J., Massey, J. D., and Painter, T. H.: Episodic Dust Events of Utah's Wasatch Front and Adjoining Region, J. Appl. Meteorol. Clim., 51, 1654–1669, https://doi.org/10.1175/JAMC-D-12-07.1, 2012.
Steltzer, H., Landry, C., Painter, T. H., Anderson, J., and Ayres, E.: Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes, P. Natl. Acad. Sci. USA, 106, 11629–11634, https://doi.org/10.1073/pnas.0900758106, 2009.
Su, F., Adam, J. C., Trenberth, K. E., and Lettenmaier, D. P.: Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis, J. Geophys. Res., 111, 1–16, https://doi.org/10.1029/2005JD006387, 2006.
Thornton, P. E. and Running, S. W.: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation, Agr. Forest Meteorol., 93, 211–228, https://doi.org/10.1016/S0168-1923(98)00126-9, 1999.
Vano, J. A., Das, T., and Lettenmaier, D. P.: Hydrologic Sensitivities of Colorado River Runoff to Changes in Precipitation and Temperature, J. Hydrometeorol., 13, 932–949, https://doi.org/10.1175/JHM-D-11-069.1, 2012.
Yu, H., a Remer, L., Chin, M., Bian, H., Tan, Q., Yuan, T., and Zhang, Y.: Aerosols from overseas rival domestic emissions over North America, Science, 337, 566–569, https://doi.org/10.1126/science.1217576, 2012.