Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF 5-year value: 5.460
IF 5-year
CiteScore value: 7.8
SNIP value: 1.623
IPP value: 4.91
SJR value: 2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
h5-index value: 65
Volume 15, issue 8
Hydrol. Earth Syst. Sci., 15, 2631–2647, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 15, 2631–2647, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Aug 2011

Research article | 25 Aug 2011

Bias correction of satellite rainfall estimates using a radar-gauge product – a case study in Oklahoma (USA)

K. Tesfagiorgis, S. E. Mahani, N. Y. Krakauer, and R. Khanbilvardi K. Tesfagiorgis et al.
  • NOAA-CREST, Civil Engineering Department at CCNY/CUNY, New York, NY 10031, USA

Abstract. Hourly Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. SPEs are prone to larger systematic errors and more uncertainty sources in comparison with ground based radar and gauge precipitation products. The present work develops an approach to seamlessly blend satellite, radar and gauge products to fill gaps in ground-based data. To mix different rainfall products, the bias of any of the products relative to each other should be removed. The study presents and tests a proposed ensemble-based method which aims to estimate spatially varying multiplicative biases in hourly SPEs using a radar-gauge rainfall product and compare it with previously used bias correction methods. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. Bias field parameters were determined on a daily basis using the shuffled complex evolution optimization algorithm. To include more error sources, ensembles of bias factors were generated and applied before bias field generation. We demonstrate this method using two satellite-based products, CPC Morphing (CMORPH) and Hydro-Estimator (HE), and a radar-gauge rainfall Stage-IV (ST-IV) dataset for several rain events in 2006 over Oklahoma. The method was compared with 3 simpler methods for bias correction: mean ratio, maximum ratio and spatial interpolation without ensembles. Bias ratio, correlation coefficient, root mean square error and mean absolute difference are used to evaluate the performance of the different methods. Results show that: (a) the methods of maximum ratio and mean ratio performed variably and did not improve the overall correlation with the ST-IV in any of the rainy events; (b) the method of interpolation was consistently able to improve all the performance criteria; (c) the method of ensembles outperformed the other 3 methods.

Publications Copernicus