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Abstract. Hourly Satellite Precipitation Estimates (SPEs)
may be the only available source of information for oper-
ational hydrologic and flash flood prediction due to spatial
limitations of radar and gauge products. SPEs are prone
to larger systematic errors and more uncertainty sources in
comparison with ground based radar and gauge precipitation
products. The present work develops an approach to seam-
lessly blend satellite, radar and gauge products to fill gaps
in ground-based data. To mix different rainfall products, the
bias of any of the products relative to each other should be
removed. The study presents and tests a proposed ensemble-
based method which aims to estimate spatially varying mul-
tiplicative biases in hourly SPEs using a radar-gauge rainfall
product and compare it with previously used bias correction
methods. Bias factors were calculated for a randomly se-
lected sample of rainy pixels in the study area. Spatial fields
of estimated bias were generated taking into account spatial
variation and random errors in the sampled values. Bias field
parameters were determined on a daily basis using the shuf-
fled complex evolution optimization algorithm. To include
more error sources, ensembles of bias factors were generated
and applied before bias field generation. We demonstrate this
method using two satellite-based products, CPC Morphing
(CMORPH) and Hydro-Estimator (HE), and a radar-gauge
rainfall Stage-IV (ST-IV) dataset for several rain events in
2006 over Oklahoma. The method was compared with 3
simpler methods for bias correction: mean ratio, maximum
ratio and spatial interpolation without ensembles. Bias ra-
tio, correlation coefficient, root mean square error and mean
absolute difference are used to evaluate the performance of
the different methods. Results show that: (a) the methods of
maximum ratio and mean ratio performed variably and did
not improve the overall correlation with the ST-IV in any of
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the rainy events; (b) the method of interpolation was consis-
tently able to improve all the performance criteria; (c) the
method of ensembles outperformed the other 3 methods.

1 Introduction

This study proposes and evaluates a method for improving
hourly Satellite Precipitation Estimates (SPEs) by correct-
ing biases with respect to a radar-gauge product. SPEs can
provide the only available dense coverage of precipitation
events, particularly over mountainous regions. Radar cov-
erage includes gap areas with missing information due to
various sources such as blockage, particularly over regions
with heavier and more frequent storms. Rain gauges are
not available everywhere and are very sparse over moun-
tains and large water bodies. Two SPE products are consid-
ered here: Hydro-Estimator (HE) (Scofield and Kuligowski,
2003), which estimates precipitation using InfraRed (IR) im-
agery from Geostationary Operational Environmental Satel-
lites (GOES), and CPC Morphing (CMORPH) (Joyce et
al., 2004), which estimates precipitation using Passive Mi-
croWave (PMW) based precipitation products.

Rainfall estimates based on IR imagery from GOES would
be useful to weather forecasters and water managers because
their high spatial (4 km) and time resolution facilitates hy-
drological prediction in comparison with the ones based on
PMW from polar-orbiting satellites. Two GOES satellites,
GOES-East and -West, cover the CONtinental United States
(CONUS) at a temporal resolution of 15 min. PMW from a
polar-orbiting satellite can provide for any given target twice
daily images at coarser resolution (e.g., 15 km). Because of
higher resolution of IR imagery, most of the satellite-based
precipitation retrieval algorithms are still based on using IR
at 10.7 micron wavelength from GOES. For instance, Hydro-
Estimator and Auto-Estimator (AE) (Vicente et al., 1998)
both use only GOES IR.
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Although the time and space resolution of GOES IR im-
agery is higher than that of microwave instruments, IR only
provides information about cloud-top brightness tempera-
ture, which is not information about inside or other cloud
properties due to its shorter wavelength. To produce higher
quality precipitation intensity, PMW has been also used for
development of some satellite-based algorithms. CMORPH
is a gridded precipitation product based on PMW data from
instruments aboard low-orbiting satellites with a secondary
use of IR cloud imagery. Though PMW precipitation prod-
ucts are generally higher in quality than IR based products,
they have their own biases, for example in semi-arid climate
where raindrops may evaporate before reaching the surface
(Rosenfeld and Mintz, 1988). Besides, PMW products are
available with some latency, which can restrict their use-
fulness for applications of flash flood forecasting. The es-
timated precipitation from the various satellite products, as
well as their performance compared to independent measures
of rainfall, can differ appreciably (Ebert et al., 2007).

In general, since satellite-based rainfall products are es-
timates from indirect measures (e.g., IR cloud-top tempera-
ture) they are prone to errors greater than the ones for radar-
based rainfall measurements. Thus, more accurate high-
resolution rainfall products could be obtained by combin-
ing satellite-based estimates with radar-based ones, using the
satellite imagery to fill in precipitation in areas where radar
is not available. In merging satellite with radar estimates
of rainfall, any bias in the satellite-based rainfall estimation
must be quantified and corrected so that the merged product
is, as far as possible, consistent.

A simple and widespread approach to reduce the error
in one rainfall product relative to another, reference prod-
uct is to multiply the rainfall from the first product by a
“bias factor” chosen to optimize the correspondence of the
two products where they overlap. Authors such as Anagnos-
tou et al. (1998), Smith and Krajewski (1990), Ahernet et
al. (1986), and Seo et al. (1999) estimated constant bias fac-
tors that were applied to the entire estimated rainfall field to
correct biases in radar precipitation products, as compared
to point-based observations from rain gauges. Seo and Brei-
denbach (2002) used a spatially varying bias factor to reduce
biases in radar precipitation products against rain gauge ob-
servations under the hypothesis that radar-gauge biases are
variable, but spatially and temporally coherent. Efforts have
also been made to quantify and correct biases in SPEs us-
ing rain gauge information (e.g. Boushaki et al., 2009 and
Smith et al., 2006). McCollum et al. (2002) evaluated biases
of SPEs using a gauge corrected radar rainfall product.

Most of the above-mentioned work assumed that the point-
based observations of rainfall provided by rain gauges form
the reference “true” measurements against which to evaluate
and correct SPEs and radar-based rainfall products. How-
ever, the rain gauge network is not always dense enough to
accurately represent a region’s rainfall, and errors can arise
in using point rain gauges to represent rainfall of a radar or

satellite pixel (Chumchean et al., 2003). In contrast, radar
provides pixel-based areal rainfall measurements with better
spatial coverage that is more comparable to the scale of satel-
lite imagery. The United States has more independent radar
coverage pixels than point rain gauges. Hence, there are
smaller sampling and random errors (Xie and Arkin, 1997)
in using merged radar-gauge products rather than point-based
rain gauges alone, particularly in areas where gauges are rel-
atively sparse. We therefore will use a merged radar-gauge
rainfall product as a reference to detect and correct biases in
SPEs.

In this study, we consider bias adjustment via spatially
variable bias factors, where the SPE field at a given time step
is corrected through multiplying by a field of bias factors.
The spatial field of bias factors is estimated from selected
radar-gauge precipitation estimates divided by the SPEs for
the same pixels to obtain a spatially distributed sample of
bias factors. To reduce sampling errors, bias factors should
be selected all over the study area (Smith et al., 2006). In
the current study, pixel bias factors are sampled randomly
over the study area. A bias factor spatial field is constructed
based on the sampled values by weighting based on a nega-
tive power of the distance to the sample points. To reduce the
effect of random error in the bias factors for individual pix-
els, our approach relies on pre-smoothing the sample values
by averaging across an ensemble where they are perturbed
with a spatially correlated noise component. We compare
this procedure of estimating the bias factor field to (a) a spa-
tially varying bias factor field constructed from the sample
points without the pre-smoothing; and (b) a spatially uniform
bias factor field based on either (1) the mean or (2) the maxi-
mum bias factor in the sample. We use two operational SPEs,
HE and CMORPH, as the products to be corrected, and the
NEXRAD Stage-IV (ST-IV) radar-gauge composite product
as the reference. Our test site is Oklahoma state, in the south-
central USA, and we consider 5 rainy days in 2006 that repre-
sent different seasons. The area is one with good rain gauge
and radar coverage and is intended to provide a preliminary
test of our method for correcting bias in satellite-based rain-
fall estimates. This study is intended to show the feasibility
of bias correction for satellite rainfall products, which can
be applied operationally even in areas and times where radar
coverage is limited so that radar overlap with the satellite
product is only partial.

This article is organized as follows. In Sect. 2, the satel-
lite and radar-gauge data are described, including the study
area. In Sect. 3, the overall approach to bias correction is de-
scribed. This includes parameter estimation and generation
of ensembles. Section 4 presents and discusses the results.
The last section offers conclusions and recommendations for
future work.
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Figure 1 Map of the conterminous U.S. (top) and the study area (red box). 5  Fig. 1. Map of the conterminous US (top) and the study area (red

box).

2 Study area and data used

A region geographically bounded by 34◦–37◦ latitude north
and 94.5◦–100◦ longitude west, comprising most of Ok-
lahoma State in the USA, was selected for this study
(Fig. 1). The study location encompasses an area of
about 136 000 km2. The topographic elevation of the area
ranges from 87 m near Little River to 1518 m above mean
sea level on Black Mesa, and mean annual precipitation
ranges from 432 mm in western high plains to 1296 mm in
Ozark forest (seehttp://climate.ok.gov/index.php/site/page/
climateof oklahoma).

Because of its rich meteorological network, the region and
specific watersheds inside it have served as a test bed for
many climatological and hydrological studies. Reliable radar
rainfall estimates from a good distributed radar network over
Oklahoma region make it well suited for investigating the
capability of different approaches to correct bias errors from
the selected SPEs (HE and CMORPH), against radar-gauge
observations (ST-IV).

2.1 Hydro-Estimator (HE)

HE (Scofield and Kuligowski, 2003), which we adjust for
bias in this study, is based on one of the cloud-top IR and
rainfall relationships. High resolution hourly HE product at
4 km× 4 km pixel size, uses the GOES IR window channel-4
(10.7 µm wavelength) as the main input data to estimate the
rate of surface rainfall. HE was developed as an improve-

ment to the original AE, which was intended for deep, moist
convective systems (http://satepsanone.nesdis.noaa.gov/PS/
PCPN/HE.html). The HE algorithm identifies raining clouds
based on both pixel brightness temperature (Tb) in GOES
channel-4 and its value relative to its surroundings: pixels
that are colder than their neighbors are presumed to be re-
gions with updrafts and rainfall, while pixels warmer than
the neighborhood average are associated with lower clouds
and light or no rain. Rainfall rate is estimated as a func-
tion of pixel Tb, its surrounding values, precipitable water,
relative humidity, convective equilibrium level, and lower-
tropospheric winds, and terrain is used to diagnose regions of
terrain-induced updrafts and downdrafts. At the NOAA Na-
tional Environmental, Data, and Information Service (NES-
DIS), HE has been an operational rainfall product since 2002,
and has been available at a spatial scale of 4 km by 4 km and
hourly time scale for CONUS since 2004.

2.2 Climate Prediction Center Morphing (CMORPH)

CMORPH is a gridded precipitation product based on both
passive microwave data from low orbiting satellites and IR
data from GOES satellite (Joyce et al., 2004). CMORPH pro-
duces operational global (60◦ N–60◦ S) precipitation prod-
ucts at spatial resolution as high as 0.0728◦ (∼8 km at the
equator) and half hourly time scale, which is the resolution
we used. It combines the different existing microwave -based
precipitation products from Special Sensor Microwave Im-
ager (SSM/I) (Ferraro et al., 1997), Advanced Microwave
Sounding Unit (AMSU)-B (Ferraro et al., 2000), and TRMM
Microwave Imager (TMI) (Kummerow et al., 2001). The
effective temporal resolutions of these products are on the
order of hours, corresponding to the overpass frequency of
most of the low orbiting satellites. In the CMORPH algo-
rithm these microwave based precipitation products are prop-
agated backwards and forwards in time to calculate precipi-
tation at a finer time resolution. The IR data is used to deter-
mine cloud evolution to propagate rainy pixels from the mi-
crowave products (Joyce et al., 2004). CMORPH has been
operational and data are available since 2002 from the Cli-
mate Prediction Center (CPC) of the National Centers for
Environmental Prediction (NCEP).

2.3 Radar-gauge Stage-IV (ST-IV)

The NEXt generation RADar (NEXRAD) system is the net-
work of more than 150 WSR-88 instruments in the United
States operated by the NWS for weather prediction and
precipitation estimation. Rainfall estimation from Doppler
radars is based on converting the reflectivity (Z) of the
radar signal, which records backscattering by rain drops, into
rainfall estimates (R) through a nonlinear power function
(Doviak and Zrinc, 1984).

At NWS, there are four stages of radar-based rainfall prod-
ucts. References such as Fulton et al. (1998) and Lin and
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Mitchell (1999) contain details of how the different stages
of radar products are produced. Briefly, Stage-I radar rain-
fall is produced for each radar scan at each radar site using
theZ-R relationship. Hourly Stage-I products are generated
by summing up the scan-wise accumulations. In the next
step, the Stage-I products are adjusted for mean field bias
using all the available rain gauges to produce bias-adjusted
Stage-II rainfall products. The bias adjusted Stage-II prod-
ucts are further optimally merged with point rain gauges
(Smith and Krajewski, 1991; Fulton et al., 1998; Seo et
al., 1999). In Stage-III, at each NWS River Forecast Cen-
ter (RFC), the Stage-II (radar-gauge) products from multiple
radars are stitched together to cover the area under the re-
spective RFC. At this stage, overlapping Stage-II products
are optimally combined. In addition, Stage-III products un-
dergo routine manual quality control to make sure that prod-
ucts are free from any obvious error (Fulton et al., 1998). The
regional Stage-III products obtained from the 12 RFCs are
further mosaicked to a national 4 km stereographic NWS’s
Hydrologic Rainfall Analysis Project (HRAP) grid at NCEP,
forming the ST-IV product. ST-IV is thus ultimately gener-
ated from more than 3000 automated hourly rain gauge ob-
servations and the WSR-88D radar based digital precipita-
tion arrays (DPA) (Fulton et al., 1998). ST-IV precipitation
product is available since 2001.

Radar based precipitation estimates are known to have
problems including isolated targets and ground clutter,
anomalous propagation, and partial beam reflection in moun-
tainous regions (Fulton et al., 1998). Radar also suffers from
range dependent attenuation (Young et al., 1999). However,
composite products, such as ST-IV from NCEP, are manually
quality controlled and corrected for these problems using di-
rect rain gauge observations as one source of calibration. In
this work, it is assumed that ST-IV can be used as a reference
precipitation field over Oklahoma against which to correct
systematic errors in SPEs.

3 Methodology

HE and ST-IV data are both in polar stereographic projection.
They are converted to a regular grid of 4 km× 4 km resolu-
tion using a simple average of the data within a 4 km square
grid cell.

In all the analysis involving CMORPH, ST-IV data at a 4
km spatial resolution is averaged to 8 km× 8 km to match up
the resolution of CMORPH.

In the following, we describe the proposed approach for
bias correction along with the simpler methods with which
we compare our approach.

3.1 Bias factor

The bias factor is defined as the ratio of a true value to the
corresponding biased value. Bias is adjusted by multiplying

the values from the biased field by the bias factor.
According to Anagnostou et al. (1998), the area-mean bias

ratio is defined as the ratio of the true mean area rainfall to the
mean area of “biased” estimates. Thus, following the same
definition, the maximum ratio bias factor will be the ratio of
the area maximum of the true values to the maximum of the
biased data field.

With the assumption that the rain gauge observation is the
true and radar-based measurement is the biased rainfall in-
formation, the mean bias ratio is written as (Anagnostou et
al., 1998):

Bh =

n∑
i=1

Gh(xi)

n∑
i=1

R
′

h(xi)

(1)

whereGh(xi) andR
′

h are the gauge and radar measurements
at locationxi and hour h. Therefore, the existing bias from
the original SPE is corrected by multiplying each pixel value
by the mean (or maximum) bias ratio.

3.2 Ensemble Bias Factor Field

Following the same definition, a bias factor or ratio between
ST-IV and SPE products at a pixel level can be written as:

B(xk,h) =
Rh(xk)

Sh(xk)
(2)

whereRh(xk) andSh(xk) are the ST-IV (the “true” measure-
ment in this study) and satellite measurements respectively,
at locationxk and hourh.

From Eq. (2) bias factors can be:

– Zero if the radar pixel is not rainy and the corresponding
satellite pixel is rainy.

– A positive real number if corresponding pixels from ST-
IV and SPE are rainy.

– Infinity if the ST-IV pixel is raining and the correspond-
ing satellite pixel is not rainy.

– Undefined if both pixels from ST-IV and SPEs are not
raining.

We kept only pixels that were rainy in both precipitation
fields; hence all our sample bias factors had positive values.
A pixel is considered rainy if it registers a rainfall value of
greater than 0.1 mm h−1 (Dai et al., 1999). A maximum of
150 (for HE) and 100 (for CMORPH, with its coarser resolu-
tion) bias factors were used for evaluation depending on the
areal coverage of rain within the study area. The process of
selecting pixels for the estimation of the bias factor field was
as follows: (a) to ensure a fair spread of bias factors over the
study area, 150 pixels for HE (100 in the case of CMORPH)
are randomly picked regardless of their bias factor values;
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(b) the non-positive bias factors are discarded; (c) the pro-
cess of randomly picking pixels continues until a total of 150
for HE (100 for CMORPH) positive bias factors is obtained;
and (d) any closely located pixels, which would tend to oc-
cur whenever rain covers only a small part of the study area,
were thinned out, potentially reducing the number of pixels
retained below 150 for HE and 100 for CMORPH.

The bias factors obtained for a sample of pixels can have
large scatter compared to the underlying bias field because
of, for example, random error in the satellite radiances or
radar backscatter. Generating an ensemble of perturbed bias
factors that represents variability based on their estimated
small-scale scatter can be useful in visualizing these errors,
and the sample can be pre-smoothed by averaging across the
ensemble.

Following the acquisition of the required number of bias
factors, the ensembles of bias factors were created by fol-
lowing a similar procedure to that of Mandel et al. (2009).
That work used Cholesky decomposition of the state covari-
ance matrix to generate posterior ensembles in an ensemble
Kalman filter. Germann et al. (2006b) used Cholesky de-
composition of the error covariance to generate ensembles
of radar precipitation fields. The method was found to be
flexible to the space-time dependence of mean, variance, and
auto-covariance of error in radar rainfall estimates (Germann
et al., 2006b). A similar approach was adopted here to per-
turb the bias factors at known locations before spatial inter-
polation to produce the bias factor field was carried out.

In our ensemble generation, letb be a knownn by 1 vector
of the randomly sampled known bias factors.M is the initial
perturbation matrix of sizen by N , whereN is the required
ensemble size (100); andM is assumed to have the form,

M = O+G (3)

O is a matrix of sizen by N . The columns ofO are replicates
of b. G is a matrix of independent random variables each
drawn fromN(0, σ 2), a normal distribution with mean zero
and unknown varianceσ 2.

The initial perturbation matrixM is multiplied by the
Cholesky factorQ of the spatial covariance matrixC to pro-
duce ensembles, Eq. (4).

M̂ = Q ·M ;C = Q ·QT (4)

C = σ 2
·f

(
di −dj

)
(5)

whereM̂ is the ensemble of perturbed bias factors,C is a
positive definite matrix of dimensionn by n with the error
covariance of each pair of sample points, assumed to be only
a function of their separation

(
di −dj

)
. M̂ is thus a function

of σ 2 as well as the parametersp andη introduced below.

Table 1. Optimized parameters for the five rainy events in 2006 for
HE (CMORPH).

Parameter

Rainy Rainy Period Range Variance Power
Event (YYMMDDHH) (η [km]) (σ2 [mm2]) (p)

1 06031818–06031918 6.87 0.75 4.44
(37.5) (0.54) (1.73)

2 06020605–06020705 4.43 0.75 4.07
(32.6) (0.20) (1.92)

3 06071021–06071121 6.58 0.85 3.23
(19.68) (0.39) (3.75)

4 06091008–06091108 6.59 1.19 4.09
(19.43) (0.32) (2.77)

5 06122902–06123002 8.55 0.50 2.70
(8.7) (0.46) (4.91)

A common correlation function, the exponential function
without nugget effect (Kitanidis, 1986) with one unknown
parameter was used as a spatial covariance estimator:

f
(
di −dj

)
= exp

(
−

|di −dj |

η

)
(6)

where |di − dj | is the Euclidean separation distance in km
between two bias factor sample pixels indexed ati and j ,
andη (km) is a range parameter.

The next step is to generate bias fields using each column
of M̂ . There are several spatial statistics approaches to gen-
erate spatial fields from point estimates of bias factors, in-
cluding linear, kriging, spline, and Inverse Distance Weight
(IDW) (Cressie, 1993). In this work, a multiplicative bias
factor for the SPE was generated for each unknown pixel on
an hourly basis using the IDW interpolation method given by
(Shepard, 1968):

b(xi,h) =

n∑
k=0

Wk,h(x)∑n
k=0Wk,h(x)

b(xk,h) (7)

Wk,h(x) =
1

D
(
xi,h,xk,h

)p (8)

whereD(xi,h,xk,h) is the distance from the unknown bias
factor pixel xi,h to all known bias factor calculated pixels
xk,h. p > 0 is an exponent, andn is the number of sample
bias factors at hourh. Finally the bias corrected SPE is cal-
culated as:

Scor,i,h =

N∑
j=1

Si,h ·bi,h,j

N
(9)

whereScor,i,h is the bias corrected HE at hourh, Si,h is the
HE at hourh andbi,h,j is thej -th member bias field at hour
h. i is the pixel index in the rainfall field.
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3.2.1 Parameter estimation

The parametersη, σ 2, andp have to be estimated to produce
optimal bias correction. Parameter estimation was carried
out separately for each day. Hourly ST-IV and SPE were ag-
gregated to daily values before ratios of corresponding rainy
pixels for parameter estimation were taken. In an operational
setup, the parameters could be estimated using the previous
24 h. Parameters could also be estimated on hourly basis.

For parameter estimation, the shuffled complex evolution
optimization algorithm (Duan et al., 1993), originally de-
veloped for hydrologic modeling, was used. Optimum val-
ues for parameters were determined based on minimizing
an objective function given by the Root Mean Square Error
(RMSE) between the ST-IV and mean ensemble bias cor-
rected SPEs for a 24 h period (Eq. 10).

RMSE=

√√√√√ m∑
h

n∑
j=1

(
Ri,h−Scor,i,h

)2

n ·m
(10)

wheren is the number of corresponding rainy pixels, andR

is the ST-IV rainfall at each pixel, andm is the number of the
rainy hours in the day.

3.3 Interpolation bias factor field

For comparison, a pixel-by-pixel spatial interpolation of
bias factors in the interpolation method is carried out using
Eq. (7), in addition to the mean and maximum ratio method
bias factors. The interpolation method uses Eq. (7) on the
original sample bias factors without generating an ensemble.
Bias corrected SPE is obtained using Eq. (9) withN = 1. We
include the method of interpolation to show that improve-
ments in bias and correlation coefficients are not only based
on the results of accounting for spatial variation, but specifi-
cally on pre-smoothing the sampled bias factors through en-
semble generation. Note that the only parameter involved in
the method of interpolation isp.

The method of mean ratio works by multiplying the orig-
inal satellite product by the mean of sampled bias factors.
Similarly, the method of the ratio of maximums works by
multiplying satellite products by the ratio of hourly maxi-
mum rain rates between the radar-gauge and the satellite es-
timates irrespective of their location.

4 Results and discussion

Four rainy representative days in 2006, one from each of the
four seasons, were chosen for model evaluation. To better
assess wintertime performance, which for SPE is generally
poor, an additional winter case was chosen for overall eval-
uation of the model. The second and the last rainy events of
the five events listed in Table 1 represent winter cases; event
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Fig. 2. Parameter sensitivity check for HE for the range (η [km]),
the power (p) and the variance (σ2 [mm2]).

1 is a spring case, event 3 is summer, and event 4 is a fall
case.

Bias adjustment using the ensembles method requires ob-
taining the optimized model parameters, namely the range
(η), the power-law exponent (p), and the variance (σ 2),
based onm-hour aggregates of SPEs and ST-IV as explained
in the previous section (Eq. 10). Table 1 lists the optimal val-
ues of the three parameters for each of the rainy days. These
varied from one rainy event to another. For HE the variance
range was from 0.5 mm2 for event 5 to 1.19 mm2 for event
4. The lowest power parameter of 2.7 was observed for event
5 while a maximum value of 4.44 was observed for event
1. The range parameter varied from 4.43 km for event 2 to
8.55 km (approximately 2 grid cells) for event 5.

After obtaining the optimized model parameters, the im-
pact of the parameters was examined by varying each pa-
rameter about their optimal values while keeping the other
parameters fixed at their optimal values. To demonstrate
the influence of the parameters in the bias correction model,
the RMSE versus the respective parameter for rainy hour
06071022 (YYMMDDHH) was plotted. Figures 2 and 3
show the response of the RMSE to variation of each pa-
rameter around their optimal values for HE and CMORPH
respectively. Figure 2 shows that the model was insensi-
tive to the power parameter up to a power of 4.5. Forp

values greater than 5 the model was acutely sensitive and
the value of RMSE decreased steadily. A high value of the
power parameter of inverse distance weight implies sharp
non smooth variation among the interpolated pixels (Shep-
ard, 1968). The range parameter that influences the spatial
correlation function shows an increase in RMSE for val-
ues less than 4 km (the grid spacing of HE) and less steep
increase at larger values. A similar parameter check for
CMORPH was carried out for the same rainy hour (Fig. 3).
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Fig. 3. Parameter sensitivity check for CMORPH for the range (η

[km]), the power (p) and the variance (σ2 [mm2]).

The pattern of the parameters obtained for CMORPH has a
similar nature to that of HE though with longer optimumη,
which is of the order of 20 km. Figure 3 suggests that the
optimal parameter set for CMORPH can be obtained from
valuesη > 19 km,p > 3 andσ 2 < 0.6 mm2.

Following optimization and sensitivity analysis of model
parameters for each rainy event, the performance of SPEs ad-
justed using the method of ensembles was evaluated by com-
paring it with that of the SPEs adjusted with the other bias
correction methods mentioned. Figure 4 shows the mapped
precipitation fields from HE and CMORPH before and after
adjustment of biases, using various bias correction methods,
are compared with ST-IV at hour 06071022. In this figure,
bias corrected satellite estimates (left side for HE and right
side for CMORPH) using the methods of (c) Maximum ratio
(d) Mean ratio (e) Interpolation and (f) Ensembles are de-
picted. Figure 4a is ST-IV (8 km resolution left and 4 km
resolution right) and Fig. 4b is the original HE (left) and
CMORPH (right). As shown in Fig. 4c, the SPE corrected
using the maximum ratio and ensemble methods gave a bet-
ter estimate than bias corrected rainfall amounts using the
methods of mean-ratio and interpolation.

Quantitative statistical evaluation criteria were calculated
using reference ST-IV pixels which were not used for bias
correction. Recall that the maximum number of pixels used
for bias correction were 150 and 100 for HE and CMORPH
respectively. The statistical criteria used for evaluation are
defined as:

Hourly Bias ratio,

Bias ratio=

n∑
j=1

Rj

n∑
j=1

Scor,j

(11)

Hourly mean Absolute Difference (AD),

AD =

n∑
j=1

|Scor−R|j

n
(12)

The hourly RMSE,

RMSE=

√√√√√ n∑
j=1

(Scor−R)2
j

n−1
(13)

The hourly Correlation Coefficient (CC) between the bias
corrected SPEs and ST-IV for corresponding rainy pixels,

CC=
COV(Scor,R)

√
VAR(Scor) ·VAR(R)

(14)

wherej is the grid index andn is the number of all corre-
sponding rainy pixels. COV(.) is the covariance between the
ST-IV rainfall estimates and the bias corrected SPEs. VAR(.)
is the variance of the rainfall field.

Figures 5 and 6 and Tables 2 and 3 compare the perfor-
mances of the bias methods using these performance crite-
ria. The figures demonstrate the performance of the individ-
ual methods for each rainy hour. Tables 2 and 3 summa-
rize RMSE, correlation coefficient, and absolute difference
for each event (from Table 1) for HE and CMORPH, respec-
tively. In these tables, the hourly bias corrected products are
aggregated to daily amounts for comparison. The relation-
ship between ST-IV and the original SPEs before bias correc-
tion is also shown in these figures and denoted as “Original”.
Figures 5a–e and 6a–e, show Bias ratio, CC, RMSE and AD
respectively. The two sets of figures 5a-e and 6a-e are for
HE and CMORPH respectively. In most of Figs. 5 and 6, the
original bias is below the red line. The red horizontal line in
these figures represents the ideal (theoretical) value for the
respective performance criteria. Thus, the satellite products
overestimate the total areal precipitation (this doesn’t mean
the satellite products overestimate precipitation intensity at
pixel level). From these figures, we note that the methods
reduced biases variably. The method of maximum ratio ef-
fectively reduced biases in Figs. 5b, 6a, d and e. However
the maximum ratio is not a reliable method for bias correc-
tion in all cases as it lacks consistency in the other bias plots.
For instance, the method further degraded the satellite prod-
uct in some cases (Figs. 5c, d and 6c). The classic mean-ratio
(mean field bias correction) method effectively reduced bias
in almost all cases except a few (for example Fig. 6a hour
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Fig. 4. Bias corrected satellite estimates (left side for HE and right side for CMORPH) at hour 06071022 using the methods of(c) Maximum
ratio (d) Mean ratio(e) Interpolation and(f) Ensembles.(a) is ST-IV (4 km resolution left and 8 km resolution right) and(b) is the original
HE (left) and CMORPH (right).
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(5a) 

(5b) 

Fig. 5. Evaluation criteria BIAS, Correlation Coefficient, Root Mean Squared Error (RMSE) and mean Absolute Difference for HE against
ST-IV. (a) Event 1,(b) Event 2,(c) Event 3,(d) Event 4 and(e)Event 5.
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(5c) 

(5d) 

Fig. 5. Continued.
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(5e) 

(e)

Fig. 5. Continued.

mark 14) when the sampled bias factors are not good repre-
sentatives of the areal precipitation. In those cases bias ratios
from the sample were mostly greater than 1 while the mean
bias ratio for the whole region was less than 1. The meth-
ods of interpolation also effectively reduced bias in satellite
precipitation products. But it was the method of ensembles
which outperformed the rest. The performance of both the
interpolation and ensembles methods is generally superior to
the mean and maximum ratio methods, which use spatially
constant bias factors.

Figures 5 and 6 also contain CC, RMSE and AD besides
BIAS for each hour. Generally poorer correlation is observed
in event 1 and event 5 (Winter cases) which reflects poor es-
timation of precipitation in satellite products in the winter
time. The methods of maximum and mean ratio don’t work
well in terms of improving the correlation coefficient (CC).
The method of ensembles tends to reduce AD and RMSE and
improve CC better than interpolation without ensembles.

Figures 7a–e and 8a–e respectively are scatter plots for
HE and CMORPH at rainy hours 06071107, 06020619,
06091015, 06122923, and 06031906. These selected hours
from each rain event shown in Table 1. The right side of
Figs. 7 and 8 represent the relationship after bias correction,
and the left side represents values before bias correction. For
each hour, the CC, RMSE and BIAS are shown as indicators
of the overall performance of the ensemble bias correction

method. The percentage improvement of the correlation co-
efficient varied from case to case. Both HE and CMORPH
showed significant improvements after bias correction was
made using the method of ensembles. For instance, for hour
06071107 the bias correction improved the correlation coef-
ficient between the HE and ST-IV by 20 %. For cases with
already higher correlation coefficient between the ST-IV and
original SPEs a lower percentage of improvement was ob-
served than with low correlation between the original SPEs
and ST-IV. The scatter plots indicate that our method has ef-
fectively improved the SPE in randomly picked hours in ev-
ery season.

In most rain events it is observed that even though sig-
nificant improvements are obtained by our approach of in-
terpolation with ensemble pre-smoothing, systematic biases
remain in the satellite products.

In the US, radar and satellite products are available near
real-time. This gives an advantage to radars to correct bi-
ases in satellite products over very sparse real time rain
gauges. This work demonstrates that daily updates of pa-
rameters are sufficient to carry out bias correction in satellite
products. The results showed that with only three parame-
ters, the method of ensembles provides useful bias correction
and should be further tested, particularly in rain gauge sparse
areas.
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(6a) 

(6b) 

Fig. 6. Evaluation criteria BIAS, Correlation Coefficient, Root Mean Squared Error (RMSE) and Absolute Difference for CMORPH against
ST-IV. (a) Event 1,(b) Event 2,(c) Event 3,(d) Event 4 and(e)Event 5.
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(6c) 

(6d) 

Fig. 6. Continued.
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(6e) 

Fig. 6. Continued.

After further testing in more locations, the developed
approach is intended to be implemented operationally
along with existing operational satellite-based precipitation
retrieval algorithms (such as HE and CMORPH) to cor-
rect biases and improve the resulting precipitation product.
This is expected to improve the operational SPE products
and reduce the differences between corresponding precipita-
tion values produced by different algorithms, benefitting end
users by providing improved quality precipitation informa-
tion particularly over areas of sporadic or incomplete radar
coverage.

The two SPE products selected for bias corrections are (1)
Hydro-Estimator (HE), available in near real time (within≈1
h) and (2) CPC Morphing (CMORPH) available at≈18 h
delay. Biases are computed and corrected against the opera-
tional merged radar-gauge rainfall product (Stage-IV), which
also available within 1–2 h (in preliminary form) to 18 h
(fully calibrated against gauge data). It is anticipated that
the proposed method can be applied at 1 to 3 h windows to
both the satellite and radar-gauge products, depending on the
areal coverage of precipitation (which controls the amount of
overlap between the satellite and radar fields). Hence, bias-
corrected HE or CMORPH precipitation fields could be pro-
duced within<24 h.

5 Summary and conclusion

In this study, a bias correction approach with spatially vary-
ing bias factors pre-smoothed using an ensemble was pro-
posed and compared to the mean field and maximum ratio ap-
proaches as well as to interpolation without pre-smoothing.
For improved spatial coverage and sampling, instead of rain
gauge measurements a radar-gauge mosaicked rainfall prod-
uct (Stage-IV) was used to correct SPEs.

The sensitivity of spatial parameters was checked by vary-
ing each parameter around its optimal value while keeping
the others constant. Results showed that all three parameters
seem to have significant impacts on the bias correction qual-
ity. As one of the efficiencies of the method, it was shown
that daily update of parameters was sufficient to adjust bi-
ases in hourly satellite products. Once the parameters were
obtained, ensembles of bias factors were imposed to repre-
sent random errors in bias factors.

The performance of the proposed bias correction method
was evaluated using root mean squared error, absolute bias,
and correlation coefficient between the ST-IV and the cor-
rected SPEs. Compared to the other methods tested, the
proposed method of ensembles showed more improvement
in bias ratio, correlation coefficient and RMSE. The method
produced a correlation coefficient of 0.9 in one case while the
other techniques did not show as much improvement over the
original satellite product.
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Table 2. Statistical outputs for the five rainy events of HE.

Statistics Methods Event 1 Event 2 Event 3 Event 4 Event 5

RMSE (mm) Original 20.58 18.60 11.70 16.90 59.70
Mean ratio 20.38 10.05 11.40 6.14 13.30
Max ratio 21.10 8.26 11.10 9.06 21.60
Interpolation 18.16 15.0 11.80 4.87 17.40
Ensemble fields 17.70 7.90 9.30 4.30 10.61

Correlation Original 0.53 0.58 0.23 0.54 0.66
Coefficient (CC) Mean ratio 0.53 0.58 0.23 0.54 0.66

Max ratio 0.53 0.58 0.23 0.54 0.66
Interpolation 0.63 0.59 0.45 0.71 0.78
Ensemble fields 0.65 0.59 0.47 0.79 0.81

Bias Ratio Original 0.86 0.46 2.24 0.28 0.28
Mean ratio 0.96 0.74 1.17 0.64 0.60
Max ratio 0.93 1.50 1.10 0.69 0.55
Interpolation 0.87 0.53 0.88 0.71 0.76
Ensemble fields 0.98 1.20 0.94 0.82 0.78

Table 3. Statistical outputs for the five rainy events of CMORPH.

Statistics Methods Event 1 Event 2 Event 3 Event 4 Event 5

RMSE (mm) Original 82.90 38.70 22.30 46.00 17.20
Mean ratio 23.40 9.90 11.00 12.60 8.64
Max ratio 18.10 11.3 10.20 10.00 8.70
Interpolation 22.90 12.47 10.90 8.50 7.22
Ensemble fields 16.70 6.80 7.30 7.50 6.27

Correlation Original 0.61 0.64 0.58 0.63 0.83
Coefficient (CC) Mean ratio 0.61 0.64 0.58 0.63 0.83

Max ratio 0.61 0.64 0.58 0.63 0.83
Interpolation 0.62 0.56 0.64 0.72 0.89
Ensemble fields 0.67 0.71 0.67 0.76 0.89

Bias Ratio Original 0.23 0.28 0.36 0.16 0.61
Mean ratio 0.64 0.53 0.73 0.45 1.02
Max ratio 0.78 0.34 0.64 0.53 1.05
Interpolation 0.63 0.45 0.62 0.53 1.01
Ensemble fields 0.80 0.96 1.08 0.60 1.01

By adjusting biases in satellite products, radar-like satellite
rainfall products can be produced. This is highly desirable in
many operational settings where radar and satellite products
being merged can differ sharply in terms of bias even though
both undergo gauge-based bias adjustments before merging.
It has also a considerable advantage in producing radar-like
products in radar gap areas and during radar outages. During
radar outages, the approach can provide radar-like products
using bias factors determined from radar data from the pre-
vious hour and satellite products from the present hour. This
method can complement the existing operational bias correc-
tions which are rain gauge based.
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Fig. 7. Scatter plot of radar-gauge (ST-IV) and satellite estimate
(HE) before (left side) and after (right side) bias correction for
06071107, 06020619, 06091015, 06122923 and 06031906 (from
top to bottom respectively). CC, RMSE and BIAS are the correla-
tion coefficient, Root Mean Squared Error and Bias.
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