Articles | Volume 14, issue 8
https://doi.org/10.5194/hess-14-1567-2010
https://doi.org/10.5194/hess-14-1567-2010
17 Aug 2010
 | 17 Aug 2010

A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data

A. Casas, S. N. Lane, D. Yu, and G. Benito

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Remote Sensing and GIS
Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: a case study in Shanghai
Hai-Min Lyu, Shui-Long Shen, Jun Yang, and Zhen-Yu Yin
Hydrol. Earth Syst. Sci., 23, 4293–4307, https://doi.org/10.5194/hess-23-4293-2019,https://doi.org/10.5194/hess-23-4293-2019, 2019
Short summary
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
A. Md Ali, D. P. Solomatine, and G. Di Baldassarre
Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015,https://doi.org/10.5194/hess-19-631-2015, 2015

Cited articles

Abbott, M. B. and Basco, D. R.: Computational fluid dynamics, Longman Scientific and Technical with John Wiley & Sons, New York, 1989.
Ackermann, F.: Airborne laser scanning – present status and future expectations, ISPRS J. Photogramm., 54, 64–67, 1999.
Anderson, E. S., Thompson, J. A., Crouse, D. A., and Austin, R. E.: Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM, Geoderma, 132(3–4), 406–415, https://doi.org/10.1016/j.geoderma.2005.06.004, 2006.
Antonarakis, A. S., Richards, K. S., and Brasington, J.: Object-based land cover classification using airborne LiDAR, Remote Sens. Environ., 112, 2988–2998, 2008.
Antonarakis, A. S., Richards, K. S., Brasington, J., Bithell, M., and Muller, E.: Retrieval of vegetative fluid resistance terms for rigid stems using airborne LiDAR, J. Geophys. Res., 113, G02S07, https://doi.org/10.1029/2007JG000543, 2008.
Download