Articles | Volume 13, issue 8
https://doi.org/10.5194/hess-13-1467-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-13-1467-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Calibration of a crop model to irrigated water use using a genetic algorithm
T. Bulatewicz
Kansas State University, Department of Computing and Information Sciences, USA
W. Jin
Kansas State University, Department of Agronomy, USA
S. Staggenborg
Kansas State University, Department of Agronomy, USA
S. Lauwo
Kansas State University, Department of Civil Engineering, USA
M. Miller
Kansas State University, Department of Computing and Information Sciences, USA
S. Das
Kansas State University, Department of Electrical and Computer Engineering, USA
D. Andresen
Kansas State University, Department of Computing and Information Sciences, USA
J. Peterson
Kansas State University, Department of Agricultural Economics, USA
D. R. Steward
Kansas State University, Department of Civil Engineering, USA
S. M. Welch
Kansas State University, Department of Agronomy, USA
Related subject area
Disciplinary Fields: Hydrology and Engineering Applications | Domains of Integration: Water Resources System
Integrating field and numerical modeling methods for applied urban karst hydrogeology
J. Epting, D. Romanov, P. Huggenberger, and G. Kaufmann
Hydrol. Earth Syst. Sci., 13, 1163–1184, https://doi.org/10.5194/hess-13-1163-2009, https://doi.org/10.5194/hess-13-1163-2009, 2009
Cited articles
Aigner, D. J. and Goldfeld, S. M.: Estimation and prediction from aggregate data when aggregates are measured more accurately than their components, Econometrica, 42, 113–134, 1974.
Arbi, N., Smith, D., and Bingham, E. T.: Dry matter and morphological responses to temperatures of alfalfa strains with differing ploidy levels, Agron. J., 71, 573–577, 1979.
Bekele, E. G. and Nicklow, J. W.: Multi-objective automatic calibration of SWAT using NSGA-II, J. Hydrol., 341(3–4), 165–176, 2007.
Berck, P. and Helfand, G.: Reconciling the von Liebig and differentiable crop production functions, Am. J. Agr. Econ., 72(4), 985–996, 1990.
Bernard, E. A., Peterson, J. M., and Steward, D. R.: A coupled hydrologic-economic modeling tool to support groundwater management decisions, in: Proceedings of the 2004 High Plains Groundwater Resources: Challenges and Opportunities, Lubbock, Texas, p. 82, 7–9 December 2004.
Bernard, E. A., Steward, D. R., and Le Grand, P.: A geodatabase for groundwater modeling in mlaem and modflow, in: Proceedings of the 2005 ESRI International User Conference, San Diego, California, Paper number 1633, 1–25, 25–29 July 2005.
Bernardos, J. N., Viglizzo, E. F., Jouvet, V., Lertora, F. A., Pordomingo, A. J., and Cid, F. D.: The use of epic model to study the agroecological change during 93 years of farming transformation in the argentine pampas, Agr. Syst., 69(3), 215–234, 2001.
Bordogna, J.: US engineering: Enabling the nation's capacity to perform, The Bent of Tau Beta Pi, 114(4), 28–32, 2003.
Bouman, B. A. M., van Keulen, H., van Laar, H. H., and Rabbinge, R.: The "school of de wit" crop growth simulation models: A pedigree and historical overview, Agr. Syst., 52(2–3), 171–198, 1996.
Bowen, W.: Modeling plant and soil systems, in: Agronomy monograph no. 31, edited by: Hanks, R. J., and Ritchie, J. T., Agronomy Society of America, Crop Science Society of America, and Soil Science Society of America, Agr. Syst., 41(4), 526–527, 1993.
Bryant, K. J., Benson, V. W., Kiniry, J. R., Williams, J. R., and Lacewell, R. D.: Simulating corn yield response to irrigation timings: Validation of the epic model, J. Prod. Agric., 5(2), 237–242, 1992.
Brown, R. A., Rosenberg, N. J., Hays, C. J., Easterling, W. E., and Mearns, L. O.: Potential production and environmental effects of switchgrass and traditional crops under current and greenhouse-altered climate in the central united states: A simulation study, Agr. Ecosyst. Environ., 78(1), 31–47, 2000.
Brown, R. A. and Rosenberg, N. J.: Climate change impacts on the potential productivity of corn and winter wheat in their primary united states growing regions, Climatic Change, 41(1), 73–107, 1999.
Bula, R. J.: Morphological characteristics of alfalfa plants grown at several temperatures, Crop Sci., 12, 683–686, 1972.
Bulatewicz, T., Andresen, D., Welch, S. M., Jin, W., Das, S., and Miller, M.: A software system for scalable parameter estimation on clusters, in: Proceedings of the 8th LCI International Conference on High-Performance Clustered Computing, South Lake Tahoe, California, p. 7, 14–17 May 2007.
Cabelguenne, M., Jones, C. A., and Williams, J. R.: Strategies for limited irrigations of maize in southwestern france – a modeling approach, Transactions of the American Society of Agriciultural Engineers, 38(2), 507–511, 1995.
Cantarero, M. G., Cirilo, A. G., and Andrade, F. H.: Night temperature at silking affects kernel set in maize, Crop Sci., 39(3), 703–710, 1999.
Cantu-Paz, E.: Efficient and accurate parallel genetic algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 2000.
Cheng, C. T., Zhao, M. Y., Chau, K. W., and Wu, X. Y.: Using genetic algorithm and topsis for xinanjiang model calibration with a single procedure, J. Hydrol., 316(1–4), 129–140, 2006.
Chowdhury, S. I. and Wardlaw, I. F.: The effect of temperature on kernel development in cereals, Aust. J. Agr. Res., 29(2), 205–223, 1978.
Cole, C. V., Williams, J., Shaffer, M., and Hanson, J.: Nutrient and organic matter dynamics as components of agricultural production systems models, Soil Sci. Soc. Am. Special Publication, 19, 147–166, 1987.
Collino, D. J., Dardanelli, J. L., De Luca, M. J., and Racca, R. W.: Temperature and water availability effects on radiation and water use efficiencies in alfalfa, Aust. J. Exp. Agr., 45(4), 383–390, 2005.
Confalonieri, R. and Bechini, L.: A preliminary evaluation of the simulation model cropsyst for alfalfa, Eur. J. Agron, 21(2), 223–237, 2004.
Craufurd, P. Q., Qi, A., Ellis, R. H., Summerfield, R. J., Roberts, E. H., and Mahalakshmi, V.: Effect of temperature on time to panicle initiation and leaf appearance in sorghum, Crop Sci., 38, 942–947, 1998.
Dai, C., Yao, M., Xie, Z., Chen, C., and Liu, J.: Parameter optimization for growth model of greenhouse crop using genetic algorithms, Appl. Soft Comput., 9(1), 13–19, 2009.
Dautrebande, S., Dewez, A., Casse, C., and Hennebert, P.: Nitrate leaching at regional scale with epic: an implicit example of a hydrotope model concept, in: International Workshop of Eur. Ag. Engineeering Field of Interest on Soil and Water, Modelling of transport processes in soils at various scales in time and space, edited by: Feyen, J. and Wiyo, K., Leuven, Belgium, 765–774, 24–26 November 1999.
Easterling III, W. E., Crosson, P. R., Rosenberg, N. J., McKenney, M. S., Katz, L. A., and Lemon, K. M.: Agricultural impacts of responses to climate change in the missouri-iowa-nebraska-kansas (mink) region, Climatic Change, 24(1–2), 23–61, 1993.
Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap, Chapman and Hall/CRC, Boca Raton, FL, 1993.
Ellis, J. R., Lacewell, R. D., Moore, J., and Richardson, J. W.: Preferred irrigation strategies in light of declining government support, J. Prod. Agric., 6, 112–118, 1993.
Engel, T., Hoogenboom, G., Jones, J. W., and Wilkens, P. W.: Aegis/win: a computer program for the application of crop simulation models across geographic areas, Agron. J., 89, 919–928, 1997.
Evers, A. J. M., Elliott, R. L., and Stevens, E. W.: Integrated decision making for reservoir, irrigation, and crop management, Agr. Syst., 58(4), 529–554, 1998.
Fick, G. W.: Simple simulation models for yield prediction applied to alfalfa in the northeast, Agron. J., 76, 235–239, 1984.
Fortin, M. C. and Moon, D. E.: Errors associated with the use of soil survey data for estimating plant-available water at a regional scale, Agron. J., 91(6), 984–990, 2000.
Frank, M. D., Beattie, B. R., and Embleton, M. E.: A comparison of alternative crop response models, Am. J. Agr. Econ., 72, 597–603, 1990.
Geleta, S., Sabbagh, G. J., Stone, J. F., Elliott, R. L., Mapp, H. P., Bernardo, D. J., and Watkins, K. B.: Importance of soil and cropping systems in the development of regional water quality policies, J. Environ. Qual., 23(1), 36–42, 1994.
Getis, A. and Ord, J. K.: The analysis of spatial association by use of distance statistics, Geogr. Anal., 24, 189–206, 1992.
Ghazali, N. J. and Cox, F. R.: Effect of temperature on soybean growth and manganese accumulation, Agron. J., 73, 363–367, 1981.
Gibson, L. R. and Mullen, R. E.: Influence of day and night temperature on soybean seed yield, Crop Sci., 36, 98–104, 1996.
Golan, A., Judge, G., and Robinson, S.: Recovering information from incomplete or partial multisectoral economic data, Rev. Econ. Stat., 76(3), 541–549, 1994.
Golan, A., Judge, G., and Perloff, J.: Estimating the size distribution of firms using government summary statistics, J. Ind. Econ., 44(1), 69–80, 1996.
Goldberg, D. E.: Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading, MA, 1989.
Graham, R. L., Shipman, G. M., Barrett, B. W., Castain, R. H., Bosilca, G., and Lumsdaine, A.: Open mpi: A high-performance, heterogeneous mpi, in: Proceedings of the Fifth International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks, Barcelona, Spain, 25–28 September, 2006.
Grimm, S. S., Jones, J. W., Boote, K. J., and Herzog, D. C.: Modeling the occurrence of reproductive stages after flowering for four soybean cultivars, Agron. J., 86, 31–38, 1994.
Grunefeld, Y. and Griliches, Z.: Is aggregation necessarily bad?, Rev. Econ. Stat., 42, 1–13, 1960.
Grzesiak, S., Rood, S. B., Freyman, S., and Major, D. J.: Growth of corn seedlings: effects of night temperature under optimum soil moisture or under drought conditions, Can. J. Plant Sci., 61, 871–877, 1981.
Guerra, L. C., Hoogenboom, G., Hook, J. E., Thomas, D. L., Boken, V. K., and Harrison, K. A.: Evaluation of on-farm irrigation applications using the simulation model epic, Irrigation Sci., 23(4), 171–181, 2005.
Hammer, G. L., Vanderlip, R. L., Gibson, G., Wade, L. J., Henzell, R. G., Younger, D. R., Warren, J., and Dale, A. B.: Genotype-by-environment interaction in grain sorghum ii effects of temperature and photoperiod on ontogeny, Crop Sci., 29, 376–384, 1989.
Hammer, G. L., Rickert, K. G., and Birch, C. J.: Improved methods for predicting individual leaf area and leaf senescence in maize (zea mays), Aust. J. Agr. Res., 49(2), 249–262, 1998.
He, K., Zheng, L., Dong, S., Tang, L., Wu, J., and Zheng, C.: PGO: a parallel computing platform for global optimization based on Genetic Algorithm, Comput. Geosci., 33(3), 357–366, 2007.
Hesketh, J. D. and Warrington, I. J.: Corn growth response to temperature: rate and duration of leaf emergence, Agron. J., 81(4), 696–701, 1989.
Howitt, R. E. and Msangi, S.: Reconstructing disaggregate production functions, in: Proceedings of the Xth Congress of the European Association of Agricultural Economists, Zaragoza, Spain, 28–31 August, 2002.
Idinoba, M. E., Idinoba, P. A., and Gbadegesin, A. S.: Radiation interception and its efficiency for dry matter production in three crop species in the transitional humid zone of nigeria, Agronomie, 22, 273–281, 2002.
Irmak, A., Jones, J. W., Mavromatis, T., Welch, S. M., Boote, K. J., and Wilkerson, G. G.: Evaluating methods for simulating soybean cultivar responses using cross validation, Agron. J., 92, 1140–1149, 2000.
Jones, C. A., Kiniry, J. R., and Dyke, P. T.: CERES-Maize: A simulation model of maize growth and development, Texas A&M Univ. Press, College Stn., TX, 1986.
Kiniry, J. R., Bean, B., Xie, Y., and P. Chen: Maize yield potential: Critical processes and simulation modeling in a high yielding environment, Agr. Syst., 82(1), 45–56, 2004.
Lal, H., Hoogenboom, G., Calixte, J. P., Jones, J. W., and Beinroth, F. H.: Using crop simulation models and gis for regional productivity analysis, Transactions of the American Society of Agriciultural Engineers, 36(1), 175–184, 1993.
Lansink, A. O., Silva, E., and Stefanou, S.: Inter-firm and intra-firm efficiency measures, J. Prod. Anal., 15, 185–199, 2001.
Lence, S. H. and Miller, D. J.: Recovering output-specific inputs from aggregate input data: A generalized cross-entropy approach, Am. J. Agr. Econ., 80(4), 852–867, 1998.
Montaigne, F.: Water pressure, National Geographic, 2–33, September 2002.
Muchow, R. C.: Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment, Field Crop. Res., 20(3), 191–219, 1989.
Muchow, R. C.: Effect of high temperature on grain growth in field-grown maize, Field Crop. Res., 23(2), 145–158, 1990.
Paris, Q.: The von liebig hypothesis, Am. J. Agr. Econ., 74, 1019–1028, 1992.
Pearson, C. J. and Hunt, L. A.: Effects of temperature of primary growth of alfalfa, Can. J. Plant Sci., 52, 1007–1015, 1972.
Pedersen, P., Boote, K. J., Jones, J. W., and Lauer, J. G.: Modifying the cropgro-soybean model to improve predictions for the upper midwest, Agron. J., 96, 556–564, 2004.
Pesaran, M. H., Peirse, R. G., and Kumar, M. S.: Econometric analysis of aggregation in the context of linear prediction models, Econometrica, 57(4), 861–888, 1989.
Peterson, J. M. and Steward, D. R.: Groundwater economics: object oriented, integrated studies using the aem, in: Proceedings of the 5th International Conference on the Analytic Element Method, Manhattan, Kansas, 26–31, 14–17 May 2006.
Prasad, P. V. V., Boote, K. J., and Allen, L. H.: Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum are more severe at elevated carbon dioxide due to higher tissue temperatures, Agr. Forest Meteorol., 139(3–4), 237–251, 2006.
Rosenthal, W. D., Vanderlip, R. L., Jackson, B. S., and Arkin, G. F.: Sorkam: A grain sorghum growth model, TAES Computer Software Documentation Number MP-1669, Texas Agr. Exp. Stn., College Station, Texas, 1989.
Sasaki, K.: An empirical analysis of linear aggregation problems: The case of investment behavior in japanese firms, J. Econometrics, 7(3), 313–331, 1978.
Seddigh, M. and Jolliff, G. D.: Effects of night temperature on dry matter partitioning and seed growth of indeterminate field-grown soybean, Crop Sci., 24, 704–710, 1984.
Seibert, J.: Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, Hydrol. Earth Syst. Sci., 4, 215–224, 2000.
Sharpley, A. N. and Williams, J. R.: Epic – erosion/productivity impact calculator: 1 model documentation, USDA Technical Bulletin, No. 1768, 1990.
Sinclair, T. R. and Muchow, R. C.: Radiation use efficiency, Adv. Agron, 65, 215–265, 1999.
Steward, D. R. and Bernard, E. A., Integrated engineering and landscape architecture approaches to address groundwater declines in the High Plains Aquifer, Chapter 9 of Case studies in water resources, 121–134, edited by: Bhandari, A. and Butkus, M. A., Association of Environmental Engineering & Science Professors, 2006a.
Steward, D. R. and Bernard, E. A.: The synergistic powers of aem and gis geodatabase models in water resources studies, Ground Water, 44(1), 56–61, 2006b.
Steward, D. R., Le Grand, P., and Bernard, E. A.: The analytic element method and supporting gis geodatabase model, in: Boundary Elements 27: Proc. 27th World Conference on BEM/MRM, Orlando, Florida, 187–196, 15–17 March 2005.
Steward, D. R.,Le Grand, P., Jankovic, I., and Strack, O. D. L.: Cauchy integrals for boundary segments with curvilinear geometry, Proc. R. Soc. Lon. Ser.-A., 464, 223–248, 2008.
Steward, D. R., Peterson, J. M., Yang, X., Bulatewicz, T., Herrera- Rodriguez, M., Mao, D., and Hendricks, N.: Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems, Water Resour. Res., 45, W05430, https://doi.org/ 10.1029/2008WR007149, 2009a.
Steward, D. R., Yang, X., and Chacon, S.: Groundwater response to changing water-use practices in sloping aquifers using convolution of transient response functions, Water Resour. Res., 45, 1–13, 2009b.
Stockle, C. O., Donatelli, M., and Nelson, R.: Cropsyst, a cropping systems simulation model, Eur. J. Agron., 18(3), 289–307, 2003.
Thain, D., Tannenbaum, T., and Livny, M.: Distributed computing in practice: the condor experience, Concurrency and Computation: Practice and Experience, 17(2–4), 323–356, 2005.
Theil, H.: Linear aggregation of economic relations, North Holland, Amsterdam, 1954.
Ueno, M. and Smith, D.: Influence of temperature on seedling growth and carbohydrate composition of three alfalfa cultivars, Agron. J., 62, 764–767, 1970.
Welch, S. M., Wilkerson, G., Whiting, K., Sun, N., Vagts, T., Buol, G., and Mavromatis, T.: Estimating soybean model genetic coefficients from private sector variety performance trial data, Transactions of the American Society of Agriciultural Engineers, 45, 1163–1175, 2002.
Whitfield, D. M., Wright, G. C., Gyles, O. A., and Taylor, A. J.: Effects of stage growth, irrigation frequency and gypsum treatment of CO2 assimilation of lucerne (medicago sativa l.) grown on a heavy clay soil, Irrigation Sci., 7(3), 169–181, 1986.
Whittaker, G., Confessor Jr., R., Griffith, S. M., Fare, R., Grosskopf, S., Steiner, J. J., Mueller-Warrant, G. W., and Banowetz G. M.: A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search, Eur. J. Oper. Res., 193(1), 195–203, 2007.
Wilhelm, E. P., Mullen, R. E., Keeling, P. L., and Singletary, G. W.: Heat stress during grain filling in maize: Effects on kernel growth and metabolism, Crop. Sci., 39, 1733–1741, 1999.
Williams, J. R., Dyke, P. T., Fuchs, W. W., Benson, V. M., Rice, O. W., and Taylor, E. D.: Epic – erosion/productivity impact calculator: 2 user manual, USDA Technical Bulletin, No. 1768, 1990.
Wilson, B. B., Schloss, J. A., and Buddemeier, R. W.: An atlas of the kansas high plains aquifer, Kansas Geological Society Educational Series, 14, p. 92, 2000.
Yang, P., Tan, G. X., and Shibasaki, R.: Using spatial epic model to simulate corn and wheat productivity: The case of north china, in: Proceedings of the 24th Asian Conference on Remote Sensing, Busan, Korea, 2003.
Yang, H. S., Dobermann, A., Lindquist, J. L., Watlers, D. T., Arkebauer, T. J., and Cassman, K. G.: Hybrid-maize – a maize simulation model that combines two crop modeling approaches, Field Crop. Res., 87, 131–154, 2004.
Yang, X., Steward, D. R., de Lange, W. J., Lauwo, S. Y., Chubb, R. M., and Bernard, E. A.: Data model for system con- ceptualization in groundwater studies, Int. J. Geogr. Inf. Sci., in press, 2009.
Zellner, A.: On the aggregation problem: A new approach to a troublesome problem, New York, Springer-Verlag, 365–374, 1969.
Zhang, X., Srinivasan, R., Zhao, K., and Van Liew, M.: Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model, Hydrol. Process., 23, 430–441, 2009.