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Abstract. Near-term consumption of groundwater for irri- term, transition to sustainable usage that matches natural
gated agriculture in the High Plains Aquifer supports a dy-recharge rates will impact ecologies, economies, demograph-
namic bio-socio-economic system, all parts of which will ics and the landscape. Recharge is that portion of precipita-
be impacted by a future transition to sustainable usage thaion not lost as evaporation from foliage, run off (affected
matches natural recharge rates. Plants are the foundation bfy ground cover), or root uptake. This problem is of global
this system and so generic plant models suitable for couplingignificance as National GeographMdntaigne 2002 de-
to representations of other component processes (hydrologiclared the High Plains Aquifer to be one of 22 worldwide
economic, etc.) are key elements of needed stakeholder déeritical areas” for “annual renewable water”.
cision support systems. This study explores utilization of This problem has been studied extensively from various
the Environmental Policy Integrated Climate (EPIC) model disciplinary perspectives with disparate unaligned concepts,
to serve in this role. Calibration required many facilities viewpoints, vocabulary, models and data. Stakeholder de-
of a fully deployed decision support system: geo-referencectision makers in this system are equally distributed across
databases of crop (corn, sorghum, alfalfa, and soybean), soig mix of governmental agencies, administrative units, private
weather, and water-use data (4931 well-years), interfacingector enterprises, and farmers. Disjoint disciplinary science
heterogeneous software components, and massively pardeaves these decision makers ill equipped to understand how
lel processing (3.810° model runs). Bootstrap probabil- consequences of management actions and policies impact
ity distributions for ten model parameters were obtained forand cascade through the integrated system. Thus, all stake-
each crop by entropy maximization via the genetic algorithm.holders share a common need for integrated, science-based,
The relative errors in yield and water estimates based on thguantitative informational tools that, collectively, target their
parameters are analyzed by crop, the level of aggregatioudiffering individual responsibilities. Toward this end, re-
(county- or well-level), and the degree of independence besearchers at Kansas State University, in conjunction with
tween the data set used for estimation and the data being pretakeholder groups, have begun to integrate economic, agro-
dicted. nomic, and hydrologic models, supported by geodatabases,
to aid in these diverse decision making procesSésyard et
al., 2005 20093 Steward and Bernay@006ab; Bernard et
1 Introduction al., 2004 2005 Yang et al, 2009.
Plants (Fig.1) form the foundation of the human-natural

Regionally, short-term consumption of groundwater in thesystem in the High Plains. Irrigation to meet transpiration
High Plains Aquifer provides for a dynamic bio-socio- needs comprises over 95% of groundwater use in portions of
economic system through irrigated agriculture. In the longthe High Plains Aquifer\(Vilson et al, 2000. Statistical crop
yield estimators used as economic production functions or in
Correspondence taS. M. Welch (ilg;%ss;imziggatlo;‘t&ergk and Hellfa_nld1990 Frank re]t a_l,. |

= (welchsm@ksu.edu) S 2 often do not explicitly represent physical
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latter is required because benchmark runs indicated that ca-
@ Climate libration would require 4 to 14d on a 40-CPU computing
- ‘ ; cluster (a significant underestimate as events later proved).
Precipitation | } On a computations-per-minute basis, this appeared represen-
tative of the computing intensity required for multi-year, spa-
% tially distributed, water policy analyses. The following sec-
@ tions present the elements of our calibration approach and the
results obtained.
m 2 The EPIC model
Irrigation  Nutrients Plant processes have been extensively modeRmivén
Iy 1992 Bouman et al.19969. The EPIC model simulates
_ the physiology of all major forages and crops in the study
- =L //k T ; ﬁg'r'izons area. Using a daily time step, three major processes are
‘ _____________________________ represented: (1) phenological development; (2) dry mat-
[ ter production and partitioning to plant tissues, resulting in
v growth; and (3) economic yield. Outputs that are relevant to
Recharge

this study are crop yield and water use reported in t/ha and
mm-ha, respectively. The model reproduces the results of

Fig. 1. Plants produce carbohydrates from carbon dioxide, water,jnation, fertilization, tillage, variety selection, alternative

and light energy. They grow and develop at rates that are nonlln'Production calendars, etc. EPIC also includes an economic
early dependent on resources and temperature. All but ca. one pe

cent of water use is for transport or cooling and is transpired. component for evaluating and optimizing management OUt._
comes. (In our research, however, a more robust economic
forecasting submodel is being usdeeferson and Steward

water fluxes and may not partition landscapes in ways di-2008 to suggest crop management choices for EPIC to sim-

rectly related to hydrological features or patterns of diver-Ulate.) Because its original focus was erosion-related, EPIC
sion. In contrast, physiological, parcel-based crop simula-°an simulate decade-scale or longer intervals. These features

tors, including the Environmental Policy Integrated Climate have suited EPIC to a broad range of applications, including
(EPIC) modet (Sharpley and Williams199Q Williams et plant nutrl'tlon studlngoIe gt al, 1987 Dautrebande et al.

al., 1990, are well suited for linkage to other models and to _1999; natlon_al and international assessments of agroecolog-
Geographic Information Systemka( et al, 1993 Engel et  ic@l change impactirown and Rosenberd 999 Brown et

al, 1997 Yang et al, 2003. Our specific objective is to es- 2l 200Q Bernardos et 12003, including the High Plains
timate irrigation needs for large numbers of representativeAQuifer (Easterling 11l et al, 1993 irrigation planning and
geo-referenced parcels. This flux couples directly to hydro-Water useBryant et al, 1992 Ellis et al, 1993 Evers et al.
logical models. We have used Sheridan County, Kansas, as998 Guerra et al.2003; and reglo.nal studieeleta et al.

a study area to prototype this estimation process. This study994 Cabelguenne et all995 Fortin and Moon2000.
evaluates the suitability of the EPIC model for providing crop  EPIC can be divided into nine subroutines of which hy-
simulation to decision support systems at the regional scaledrology and plant growth were of interest for our simula-
In this work we chose a county size as this represents a starfions Williams et al, 1990. The hydrology subroutine is
dard land unit size for aggregation of information reported ©©mposed of surface runoff, percolation, lateral sub-surface
about crop production (yields, etc.), information that was movement and evaporation. These processes in our simula-
needed for this study. We are also evaluating extending thesdons were controlled by the parameters used to describe the

methods to larger scales such as the Ogallala Aquifer portior§0il groups. Slope, and NRCS runoff curves, soil water con-
of Kansas. tent and rainfall amounts determine runoff. Percolation and

The first step is to calibrate the EPIC model. Although lateral sub-surface movement is controlled by the soil layer

basically a parameter estimation process, heavy computafiata- I_30tential evaporation was estimated using the Penman-
tional requirements mandate development of much of theVionteith method. _ o

infrastructure required by a fully deployed decision support Plant growth is determined on a daily time step based on
system. This includes geo-referenced databases of Cromtercepte_d sola_r radiation. Daily plant growth is estimated
soil, weather, and water-use data, interfacing heterogeneo® @ function of intercepted solar energy and plant leaf area.
software components (i.e. model, optimizer, data retrieval),Daily dry matter is accumulated for the growing season that

and, most importantly, distributed parallel processing. The!S controlled by heat units or environmental conditions (ty-
pically freeze events for summer crops) and yield is esti-

10originally named the Erosion Productivity Impact Calculator. mated using a total biomass to grain ratio, which is referred
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to as a harvest index. Species-specific parameters distinguisféble 1. EPIC parameters to be estimated.
between crops.
EPIC is able to simulate multiple crops because it embod-

. . . Parameter  Description Units
ies a generic plant model that can be re-parameterized to rep-

resent different species. Talllelescribes the subset of these IRl Minimum application interval  d
parameters that were estimated for four major regional crops: for automatic irrigation

corn, grain sorghum, alfalfa, and soyb&anA priori param- BIR Water stress factor to trigger None
eter value ranges are given in TaBle the first column con- automatic irrigation —

tains values suggested in the EPIC Users Mariélliams irrigation occurs on days where

the ratio of biomass produced
to potential production given
adequate water falls below BIR

ARMN Minimum volume allowed mm
for automatic irrigation in
a single application
RMX Maximum volume allowed mm
for automatic irrigation in
a single application
WA Biomass to energy ratio —
the amount of plant tissue Thami—1
(dry weight) produced per
unit of solar energy

et al, 1990. The other columns are based on authors’ expe-
rience within the study area. The former are wider because
of the crop and geographic diversity of EPIC utilization. Al-
though some of the chosen parameter ranges exceed the typ-
ical ranges stated in the EPIC documentation, these typical
ranges do not reflect the limits that the model is capable of
simulating. A
Variables that control plant growth and canopy develop-
ment (and subsequent water use) were selected for optimiza-
tions. These were WA, TB, TG, DLAI, RLAD, and RBMD
(Table2). Variables that affect irrigation timing (IRI, BIR,
ARMN, and ARMX) were also optimized. Other inputs that
might affect hydrology (soil runoff curve and slope) were

; ti t t °

based on the soil groups. Growth-related parameters such g?;gﬁ?gri:,n\,?hera ure c
as fertilizer uptake were not altered as plant nutrition was not . Mini ¢ ‘ oc
of interest and simulations were managed in a manner such inimum temperature

- . for plant growth
that nutrient stress did not affect plant growth and canopy _ .

DLAI Fraction of growing season
development. ;
completed when the ratio of %

The irrigation-related parameters deserve special mention.
The dates and amounts of individual irrigation applications
?re r_arellyda\/“c';ulatble t? mo_delfrs.” Thtgs, mos(; Cro[;].SIYT.UIa- RLAD Leaf area decline rate — None
ors include “automatic irrigation” options under which ir- an index of the rate at which
rigations are simulated on dates when preset soil moisture LAl declines after DLAI
or water stress levels are reached. We sought values for the . .

. . . RBMD Biomass-energy decline rate — None
parameters defining this option that reproduce annual water an index of the rate at which
usage for wells in the study area — in effect attempting to WA declines after DLAI
solve for indexes of irrigator behavior.

leaf area to ground
area (LAI) begins to decline

3 Calibration data sets . . . . .
First, several variables needed to identify production rela-

Data on all irrigated land parcels in Kansas are available int|onsh|ps (crop yields and the levels of other inputs such as

a unique database maintained by the Kansas Division of walertilizers and pesticides) are not included. Second, if mul-

ter Resources (KDWR). Irrigators in Kansas are required totlple Crops are€ grown on a given parcel, the irrigator is not
report their yearly water use by parcel to the KDWR. The an_req_uwed tq report the SUb(_j'V'SIOH Qf acreage or Water_ allo-
nual report for each parcel also includes the type of irrigation®2on- dTh'rd' although pom]Es of diversion adre _mcreasmgly
system, the crop(s) grown, the number of acres irrigated, an&?et(_ar_e , water use rep(_)rt§ rom un-metere qtes may have
the yearly irrigated water volume. These reports are Com_3|gn|f|canterror. These limitations mean that estimation must
piled and distributed via a publicly available GIS data pro- be robqst_ in the face of uncertain dgta (see gec_t. _
duct, the Water Information Management and Analysis Sys- Obtaining good parameter estimates requires multiple
tem (WIMAS, Fig.2). Although WIMAS data are spatially Years' of data to overcome annual weather variation.
comprehensive and detailed, they have some shortcoming¥/IMAS data are sparse before 1990 so the 11-year period
1990-2000 was used. Historic weather data collected from
2Estimation of wheat parameters was deferred because the esive weather stations in and around the county were used
tra programming complexity required to split activities across two in the simulations. The simulation of each well used the
calendar years was not seen as necessary to evaluate the approackeather data from the station nearest the well. Sheridan
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Table 2. Parameter ranges used in the estimations.

Parameter  Units EPIC Corn Alfalfa Sorghum  Soybean
IRI d 1-200 3-14 3-14 3-14 3-14
BIR None 0.2-0.95 0.5-0.95 0.5-0.95 0.5-0.95 0.5-0.95
ARMN mm 1-100 7-14 7-14 7-14 7-14
ARMX mm 10-300 25-45 25-45 25-45 25-45
WA ThatMJ~1 10-50 40-60 20-50 10-50 10-40
B °C 10-30 20-35 20-35 20-37 25-35
TG °C 0-12 5-15 0-12 0-15 5-15
DLAI % 0.4-0.99 0.75-0.95 0.75-0.95 0.75-0.95 0.75-0.95
RLAD None 0-10 0-10 0-10 0-10 0-10
RBMD None 0-10 0-10 0-10 0-10 0-10
T B . o gt 4931 WeII—yea_\r _combinations and the _corr.esponding break-
- s x & 5| oo i 2000 down of total irrigation water usage. Irrigation accounted for
§ 7 % Com 98.8% of all water pumped in Sheridan County during the
o 5 e study period and the well-years in this study totaled 81.3%
[ < 2 ! EL o Sopbean of all irrigation usage.
| Wi R ANPR P et Because policy analysis will ultimately entail large
- b G N e amounts of computing poweSteward et a).20093, it is
e WY N 5 Shaa desirable to understand the relationship between sample size
X, S a < * and estimation outcomes. Thus, a ca. ten percent sub-sample
) e o o B u of corn well-years was randomly selected from five clusters
i A 3 p b S0\ ‘J w<(>>E identified in each soil group via ti@etis and Orq1992 G*
{ %8 & * o : statistic. The well clusters were based on (1) maximum re-

Kansas Context Map

County soils were combined into two groups using data from
the Soil Survey Geographic (SSURGHItp://soildatamart.
nrcs.usda.ggwatabase maintained by the Natural Resource
Conservation Service of the United States Department o
Agriculture. Group | contains silt loam soils with slopes be-
tween 1 and 3%. This group contains ca. 76% of the land area
and 663 of 779 total wells in the county. The second group
includes all soils with slopes greater than 5%. This group
consists of loam, silt loam and silty clay loam soils and ac-
counts for ca. 23% of the land and 93 v_veIIs. The remaining; ) he study region and perform the analysis at macro-level or
ca. 1% of the land and 23 wells were discarded. Thus, eacfe

simulation of the crop production associated with a well uti-
lizes one of the five sources of weather data and one of the
two soil groups. Of the possible 8316 well-years in the si-
mulation period (756 wells over 11 years), 4931 of them were,
used in the calibration. The WIMAS data reported that the
other 3385 well-years either did not grow a crop or grew a
crop that was not one of the four included in the this study

(or multiple crops were grown).

Hydrol. Earth Syst. Sci., 13, 1467483 2009

ported volumes of water pumped in any of the 11 years and
(2) spatial propinquity (Fig3).
For a coupled hydrology-crop-economic model to be use-
Fig. 2. Well locations in Sheridan Co. KS. Wells are visually coded ful, it is clearly important to mimic crop yields as well as
to show the crop grown in 2000. The most common crop is corn. water use $teward et aJ.2009h). County average annual
yield data by crop were obtained from the National Agri-

cultural Statistics Service Quick Stats databdme (//www.
nass.usda.gguhat contains reports from the Kansas Agri-
cultural Statistics Service. The different aggregation levels
S{or the yield and water use data reflect a frequent occurrence
in interdisciplinary regional studies. Aggregation effects on
model accuracy have been studied both theoretically and em-
pirically (Theil, 1954 Grunefeld and Grilichesl96Q Zell-

ner, 1969 Aigner and Goldfeld1974 Sasakil1978 Pesaran

et al, 1989. While any level of aggregation is possible, ex-
treme modeling approaches are (1) to aggregate all the data

2) to downscale variables available only in aggregate form
into many small regions and conduct a micro-level analysis
with a unique sub-model for each decision maker. However,
the most accurate aggregation level for a real problem must
be found empirically as it depends on unobservables like data
measurement errors. While cognizant of these issues, we
have elected not to investigate them at this time. Instead, we
are utilizing an estimation method that (1) does not require

all data to be at the same scale and (2) yields unambiguous
We ensured that each crop was represented by at Ieaﬂdicators of parameter uncertainty.

one well in each year. Tabl@shows the distribution of all

www.hydrol-earth-syst-sci.net/13/1467/2009/
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4 Maximum entropy estimation Table 3. Distribution by crop of well-years by soil group and

water use.
Maximum entropy (ME) Golan et al, 1996 estimation en-
tails maximizing an information theoretic measure of uncer- Crop Soil Group Irrigation
tainty (entropy,H) subject to constraints imposed by data. | Il Water (10° m3)
The results are probabilistic estimates of parameter values Alfalfa 223 27 19.2
that are as certain as the data allow, but no more so. ME equa- All Corn 3870 374 781.4
tions remain solvable even in cases where sparse data render 10pct. Corn 521 56 108.9
the corresponding Least Squares (LS) and Maximum Likeli- Sorghum 285 27 30.6
hood (ML) equations indeterminate. ME estimation has be- Soybean 116 9 15.0

come increasingly popular in many situations, particularly in
models where the data are incomplete because the variables
of interest are measured at high levels of aggregation. In

' . . ooy

the field of production economics, several researchers have * | Logond
invoked ME estimation to recover disaggregated production ;‘ .' ®: | wax pumpea ()
relationships (e.g., crop yield as a function of field-level in- Fpeg. 3 ed i oe
puts) from aggregate date@witt and Msangi2002 Lence "“. AN
and Miller, 1998 Lansink et al. 2001 Golan et al. 1994 T A
1996. The parameter values obtained through the estima- $%8 0y é213554c7573.:8
tion procedure were not estimated for individual fields, as the " Grovp.1iSols
values were assumed to be representative across the study re $o o -
gion, which is relatively homogeneous in terms of soils, wa- ¥ "
ter availability, farming practices/technology, etc. b | w<{:}e

Analytically, EPIC can be represented as a mapping from Vs :

|y W ey [V
012525 5 75 10

the combined spaces of model inputs and parameters to
a space of outputs. More formally, if there are a total/of
input variables (soil characteristics, weather conditions, irri- .
gation amounts, etc.), and all inputs are real numbers, then (3) Maximum water pumped by each well
EPIC inputs can be represented as a veste®’. Simi-
larly, if there areK parameters, each of which is known to
lie in an interval with finite bounds, then the parameters are
a vectorfeB, a hypervolume imtX. For simplicity, assume
initially that the only model output of interest is crop yield,
v, which is always non-negative. EPIC is then a mapping
Fy : % xB—9%, and a yield prediction for a given situa-
tion can be written ag=F, (x; B).

The ME procedure estimates the probability distributions
of the unknown parametefs Let z; be anM-dimensional
vector of support points along the¢h dimension ofB, and
let p;. be the corresponding vector of probabilities; i.e.,
pmik=Prod Br=zmx], m=1, ..., M. For a givenpy, the es-
timated value of, can be written as! p, wherez! is the
transpose ot;. The simplest specification is where there  (p) Clustered wells. A banded northwest-to-southeast (greater
are two support points for each parameter, corresponding t0 o lesser) trend in pumping is evident.
upper and lower bounds of the known range. In this case,
the estimate of théth parameter i, =piz1c+(1— pr)z2k- _ ) ) )
In the general case, the entire parameter vector can pEIg. 3. Wells in Sheridan Co. KS on a map of Group | (largely silt
written compactly ag8=Zp, where p=(p1, ..., px) and loam) soils.

Z:diag(z{, e, z,T().

If all input data,x;;, and yield datay;;=F) (x;;; B) were
available for each of=1,...,n years andj;=1,...,m;
wells whereK « ", m;, then could be estimated via ME,
LS or ML (seeWelch et al.(2002 or Steward et al(2008 T
for an LS example). However, in the current situation, only H= ng(_p Inp) @)

Legend
Cluster 1
@  Cluster 2
@® Cluster3
@® Cluster 4
@® Cluster 5

OQT I:l Sheridan County

Group 1 Soils

ansas Context Map

the average yieldg;;, for the study area are known, ME still
provides an estimate @. One solves
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subject to: estimation run, the solutions were updated by means of two
" m operators, mutation and recombination. Mutation was ac-
y, = (Z w; Fy(xij; Zp)) / (Z wj> (2) complished by adding a small, random perturbation to each
=1 =1 probability in the solution. The sum of all perturbations
added to any vector was zero so mutated vectors still summed
1= leM,k =1,...,K (3) to one; appropriate limits kept probabilities between zero
and one. During recombination, existing pairs of solutions
where H is entropy andv; is the area irrigated by well, (calledparentg were used to create new onedfépring ac-

andl,, is anM-dimensional vector of ones. This is solvable cording to

no matter how sparse the yield data because the constraint

that probabilities sum to one is, alone, sufficient to determinet? = (M)1p + (1 —2)2p (4)
a p (namely, the uniform distribution whegs,r=(M K)~1). '~ (12 2 5
The foundations of entropy estimation are described in detaif? = ( )1p + (M2p ©)

in Golan et aI.(1996. The abiIity to handle limited data In the above equatioﬂp and,p are the two parent vectors

differs drastically from LS and ML where the rank of the and,p’, ,p’ the offspring. The quantity. was randomly
governing equations is determined by the number of observadistributed in the interval [0, 1].

tions and must at least equal the dimensionality of the vector The selection of parents during crossover was done in

of unknown parameters. a manner motivated by Darwinian survival of the fittest. To
The description just given readily generalizes to the case obptain each parent, two candidate solutions were drawn ran-

multiple dependent variables (here, crop yieldt/ha), and  domly from the population and the fitter one chosen. The

water usew (mm-ha)) or data statistics (e.g., one might also fitness of any solutionp, was

seek to mimic higher moments of inter-annual water use).

Additional information is simply added as further optimiza- ./ (P) = —p" Inp —c(p), (6)

tion constraints. This flexibility to tailor the problem state- where the first term is the entropy ardp) was a func-

ment to the information available is another reason for ME'Sion that penalized solutions which violated any data con-

increasing utilization. straint. Although not uncommon in mathematical optimiza-

o tion, penalty functions must be carefully designed. Sub-
5 Optimization methodology stantial constraint violations may result when penalties are

) ) o too mild. Excessively harsh penalties can prevent the com-
The genetic algorithm (GA)Goldberg 1989, an optimiza-  hter from finding any solution, even when one exists.

tion procedure based on Darwinian evolution, was appliedaggitionally, (1) variation in the numerical magnitudes
to maximize H. GA possess a number of desirable fea- 3mong model outputs will differentially affect the penalty

tures that make them an attractive optimization method forynq (2) the investigators may prefer to predict some variables
this study. They are quite robust in the presence of local 0py,ore accurately than others.

tima and both theoretical studies as well as simulations with 14 ameliorate differences in numerical magnitudes, the
real-world problems suggest that they are quite effective inpena|ty function was defined as the weighted sum of the rel-
obtaining very good solutions. In addition, the vast existing 4tive absolute errors

literature on the topic allows one to choose from a variety of

operators to suit the needs of a particular optimization prob- s E-—(Z?—'zl ) Fy(xij; Zp)) / ( " 1a,j)

Do Vi

lem. c(p) = Ay
For these reasons, GA have been widely employed in the

parameter estimation of models such as ERlang et al.

(2009 found GA to perform well compared to other opti- S ey Fu (i 20)|

mization algorithms in the calibration of the SWAT model. +Au [('Zl—“) i=1 /il ”Z’f’ LI }

Multi-objective GA have been used in the calibration of this ’ L=

model Bekele and Nicklow2007, Whittaker et al.2007) as where(n,, /1) is the ratio of investigator preference for er-

well. GA have also been used to calibrate runoff models suchrors in predicted water use over errors in yield apdscales

as HBV (Seibert 2000 and TOPSISCheng et a].2006§ as  the penalty relative to the entropy. Becaugg) penalizes

well as crop Dai et al, 2009 and crop-related models such the closure error of what are intended to be equality con-

as SWAP He et al, 2007). straints,A y must be as large as possible while still allowing
GA operates on a population of trial solutions (100 in the entropy to influence the optimizer. Thug was cho-

this study), each of which is a vector of probabilitigs, sen so that entropy accounted for 5% of the total fithess.

The population was initially seeded with random vectors thatAlthough our procedure imposes only two constraints (zero

were normalized to become probabilities summing to unityyield and water-use error) on 10 free parameters, an exact

(Fig. 4). In each of 200iterations (callegeneration} per solution is not possible because the constraints pull the free

Hydrol. Earth Syst. Sci., 13, 1467483 2009 www.hydrol-earth-syst-sci.net/13/1467/2009/
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Perform an EPIC
simulation for =

each solution for "
each well-year

Generate 100
random
solutions

Calculate water
use error and
yield error for
each solution

Calculate penalty

Y

and entropy for
each solution

A

Generate new
solutions via
mutation and
recombination

Fig. 4. Overview of the optimization procedure.

variables in opposite directions: solutions that satisfy the
yield constraint result in high water error (and vice-versa).
For this reason, we sought to minimize and balance the er-
ror of both constraints. An arbitrary, but not unreasonable
value for (n,,/ny) is one for which the relative error in wa-
ter use, when aggregated from the well to the county level,
equals that of yield. To identify a suitable value, a series of
20 estimation runs with randomized initial conditions was
performed for each of 14 different values 6f,/n,) us-
ing the ten percent sample corn data. Figbrghows that
(nw/ny)=14 is an appropriate weight ratio; it was used in all
subsequent runs.

The entire investigation entailed 3.841 billion executions
of the EPIC odel; the pilot study to sét,/n,), alone, re-

200
generations
completed?

Identify elite
solution with
highest fitness

0.25 |
0.20,
,

0154

mean relative error

0.10

Y

Calculate fitness

of each solution:

5% entropy and
95% penalty

water/yield penalty ratio

quired 616 million simulations. Such numbers are ca. three (a) Ratios ranging form 0.01 to 100.

orders of magnitude greater than those in studies reported
just a few years ago (e.grmak et al, 200Q Welch et al,
2002. Computation of this scale demands the use of high-
performance computing. The GA was designed in a master-
slave parallel fashionQantu-Paz 2000 and implemented

as a scalable system that hybridized several software com-
ponents. The interdisciplinary discussion and design was
facilitated by writing the GA in a high-level mathematical
scripting language (Scilathttp://www.scilab.org/ On the
other hand, parallel execution of the model was coordinated
by a client written in C to achieve high-performance. The
model itself is a legacy Fortran code. The system executes
on both dedicated clusters via MR aham et a).2006 and

in a loosely-coupled, distributed fashion via Conddh4in

0.125 4

0.120 4

0.115+4

0.1104

mean relative error

0.105 4

T T T
13 14 15
water/yield penalty ratio

(b) A close up of the crossover range.
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et al, 2005. The simulations were performed on a 200 CPU Fig. 5. Mean relative error for the ten percent corn sample as a
Beowulf cluster at Kansas State University and a 200 noddunction of the preference ratio between county-level water (dashed
Condor pool at the University of Oklahoma. Software perfor- lin€) and yield (solid line) residuals.

mance measures and scalability were reporteBlrtetewicz
et al, 2007).
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6 Computations and discussion ticularly sensitive to IRI in the range of 4 to 10d, but sensi-
tivity increases above this point (data not shown). A shal-
There are several general questions to ask in a parameter égsw minimum in f(p) slightly above 10d could therefore
timation study of this type. First, what are the resultesgi-  account for our results. To the best of our knowledge, no
matesand what can be said about their uncertainty? Secondprior studies have calibrated IRI so this model feature has not
howreasonablaire the results in terms of both the individual previously been detected. It is potentially important in that
estimates and their interrelationships? Third, ME integratest suggests that irrigation scheduling could possibly reduce
all sources of information in determining its results, includ- water use while maintaining yields. The minimum and max-
ing both the data as well as theor informationavailable to  imum volumes for automatic irrigation (ARMN and ARMX,
the investigators and expressed in the initial ranges set for theespectively) resulted in mean values across all four crops of
parameters. What has been the relative influence of these tw0.6 and 37.6 mm per application, respectively. While real-
factors on the outcome? Fourth, what levepoddictability  istic in terms of typical irrigation practices, these limits are

has been achieved? broad enough to encompass a model shift from more numer-
ous smaller applications to fewer, larger ones.
6.1 Estimates and reasonableness The physiologically-based variables followed trends pre-

viously reported from field and greenhouse experiments as

To address these issues in an integrated way, a bootstragell as other crop modeling efforts. The water stress level to
procedure was usetfron and Tibshiranil993. For each trigger irrigation (BIR) is specified in terms of biomass pro-
of 250 replicates, a random sample of 11 years was selectegluction: irrigation occurs on days where the ratio of biomass
with replacement from the data and a set of parameter esproduced to potential production (given adequate water) falls
timates obtained. On average, each replicate containe@lelow BIR. The BIR values for corn, grain sorghum, alfalfa,
ca. seven unique years. To ensure that the variation within thend soybean are 0.86, 0.87, 0.87, and 0.85, respectively — not
resample structurally reflected that within the original data,unreasonable for irrigated cropping conditions where water
the wells in each year were further re-sampled by soil typestress is less likely to occur.
and weather station. This was done for all crops, including Optimized parameters that not unexpectedly had species-
separate runs for the ten percent sample and complete cokpecific ranges are biomass to energy conversion ratio (WA),
data sets. Averaging the best estimates of the 250 replicationgptimum temperature for growth (TB), and minimum tem-
gives the final estimates (Tablégo 7). The standard devia- perature of growth (TG). Optimized values for WA were 47.0
tions of the 250 estimates are the bootstrap standard errors @r corn (complete data), 33.4 for grain sorghum, 29.2 for al-
the parameters. The shape of the probability distribution forfalfa, and 31.2 for soybean. Reported corn WA values ranged
each parameter can be approximately visualized by plottingrom 14.5 to 43.3thal MJ~1m~2 (Cantarero et 3/.1999
a histogram of the estimates from the individual bootstrapMuchow, 1990 Hammer et a].1998 Kiniry et al., 2004 Idi-
replications. The histograms indicate the number of timesnoba et al.2002 Sinclair and Muchow1999 with the range
that a parameter value was estimated to be in a given rangeeing attributed to differences in environmental conditions
out of 250 bootstrap replications for each crop (Fig<l0). and calculation method. Reported WA specifically for use

An immediate result is that the parameter values estimateéh crop models for corn have ranged from 43.3 in CERES-
using the complete corn data were found to closely match théviaize (Yang et al, 2004, 39.8 for ALMANAC (Kiniry et
values estimated using only the ten percent sample of corl., 2004 and 35.0 to 40.0tha MJ~tm~2 for CropSyst
data. The difference in each estimated value was less tha(tockle et al.2003.
1% for most parameters, with the largest difference being 5% For grain sorghum, reported WA values have ranged from
for the maximum volume per irrigation (ARMX) parameter. 16.0 to 28.0thal MJ~tm~—2 (Muchow, 1989 Sinclair and

Optimization of the three variables that are associated wittMuchow, 1999. However, values used in sorghum crop
irrigation system management (IRI, ARMN, and ARMX, Ta- models range from 32.0 in SORKANRpsenthal et 41989
ble 1) resulted in similar values across the four crops (Ta-to 35.0 to 40.0thal MJ~1m~2 in CropSyst Stockle et al.
bles4 to 7). The minimum application interval (IRI) for all 2003, which are very similar to those found here.
crops was approximately 10.3d (Tabkew 7) and is longer Alfalfa WA measurements and its inclusion in simulation
than typically experienced under current production and ensuites are limited compared with corn, grain sorghum or soy-
vironmental constraints. Given sufficient data, EPIC appliesbean. Collino et al. (2005 reported WA values between
reasonable total amounts of water on a countywide basis (e.d.2.0 and 15.0 t ia MJ~1 m=2 for field grown alfalfa in Ar-
corn in TableB), but appears to do so in fewer, larger, appli- gentina andwVhitfield et al. (1986 reported a WA value of
cations. The average well capacity for all wells 45ha. Us-17.2thalMJ~1m~2. Confalonieri and Bechir2004) used
ing these values, it is possible to apply an irrigation depth 0f30.0 for a WA value after calibrating CropSyst for use in
37mm every 5.4d. A common practice is for constant irri- northern Italy. Although higher than reported field values,
gation during critical growth stages so as to maximize yields.this WA value is nearly identical to the 29.2 value that re-
Additional model runs indicate that EPIC outputs are not par-sulted from our optimization process.
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Table 4. Parameter estimates for corn.
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Table 5. Parameter estimates for alfalfa.

Table 6. Parameter estimates for sorghum.

Table 7. Parameter estimates for soybean.

Parameter  Description Units All Data/10 pct. Sample
Estimate  Std. Err

IRI Minimum irrigation interval 10.3/10.3 1.52/1.58
BIR Water stress to trigger irrigation None 0.86/0.85 0.07/0.08
ARMN Minimum volume per irrigation mm 10.5/10.4 0.75/0.87
ARMX Maximum volume per irrigation mm 35.9/37.6  2.99/3.87
WA Biomass to energy ratio ThadmI~1 47.0/47.6 3.32/3.41
B Optimum temperature for growth °C 27.2/28.1 3.38/3.47
TG Minimum temperature for growth °C 8.20/8.23 0.52/0.62
DLAI When LAl begins to decline % 0.86/0.86 0.03/0.03
RLAD Leaf area decline rate None 4.95/5.03 1.03/1.14
RBMD Biomass-energy decline rate None 5.17/5.14 1.11/1.10

Parameter  Description Units Estimate Std. Err

IRI Minimum irrigation interval d 10.3 1.56

BIR Water stress to trigger irrigation None 0.87 0.05

ARMN Minimum volume per irrigation mm-ha 10.7 0.99

ARMX Maximum volume per irrigation mm-ha 39.1 3.34

WA Biomass to energy ratio ThdMi1 292 3.04

TB Optimum temperature for growth °C 30.4 3.06

TG Minimum temperature for growth °C 0.50 0.81

DLAI When LAl begins to decline % 0.85 0.02

RLAD Leaf area decline rate None 5.08 1.03

RBMD Biomass-energy decline rate None 5.01 0.98

Parameter  Description Units Estimate Std. Err

IRI Minimum irrigation interval d 10.8 2.59

BIR Water stress to trigger irrigation None 0.87 0.06

ARMN Minimum volume per irrigation mm-ha 10.8 1.14

ARMX Maximum volume per irrigation mm-ha 38.3 5.13

WA Biomass to energy ratio Thdmi~1 334 4.39

B Optimum temperature for growth °C 325 3.35

TG Minimum temperature for growth °C 6.19 3.36

DLAI When LAI begins to decline % 0.87 0.04

RLAD Leaf area decline rate None 4.99 1.39

RBMD Biomass-energy decline rate None 5.10 1.26

Parameter  Description Units Estimate  Std. Err

IRI Minimum irrigation interval d 9.82 2.01

BIR Water stress to trigger irrigation None 0.85 0.07

ARMN Minimum volume per irrigation mm-ha 104 0.81

ARMX Maximum volume per irrigation mm-ha 37.3 4.50

WA Biomass to energy ratio Thdmi1 312 3.38

TB Optimum temperature for growth °C 29.1 2.53

TG Minimum temperature for growth °C 10.7 1.44

DLAI When LAl begins to decline % 0.86 0.04

RLAD Leaf area decline rate None 4.99 1.10

RBMD Biomass-energy decline rate None 5.02 1.18

www.hydrol-earth-syst-sci.net/13/1467/2009/
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Table 8. Relative errors.

a Not separately bootstrappeRiDifferent grains are not commensurateSingle wells are single cropS.Analysis would require averaging

T. Bulatewicz et al.: Calibration of a crop model to irrigated water use

Crop Yield Water
Means  Bootstrap Replicates Means Bootstrap Replicates
Fitted Fitted Predictive  Fitted Fitted Fitted Predictive
County County County County  Well County Well County Well
10pct. Corn  0.09 0.11 0.14 0.16 0.32 0.15 031 0.21 0.35
90pct. Corn  0.09 @ a 0.13 033 @ a a a
All Corn 0.09 0.10 0.13 0.13 0.13 0.32 0.19 0.35
Alfalfa 0.16 0.17 0.20 0.21 0.22 0.43 0.27 0.46
Sorghum 0.10 0.10 0.13 0.25 0.46 0.24 044 031 0.49
Soybean 0.18 0.20 0.25 0.31 0.42 0.25 0.38 0.34 0.45
AllCrops 009 P b 013 ¢ d d d d

(number of bootstrap reg&fmber of crops scenarios (ca. 3:910°).

Fig. 6. Bootstrap histograms for the complete corn data.
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Fig. 7. Bootstrap histograms for the ten percent corn data.

Soybean WA values from field experiments have be for unstressed plants and includes root growth, which are

been reported to be 20.G%Biaclair and Muchow 1999.

often cited as reasons for field measured values being lower

CropSyst initial WA values are reported as 20.0 to than those finally published as being used in most crop si-
25.0thalMJ~Tm~2 which is lower than the WA of 31.2 mulation models. Soybean WA was the only optimized value
that resulted from the optimization process we used. The pothat was higher than reported for use by simulation models.
tential radiation use efficiency (WA) in EPIC is assumed to

Hydrol. Earth Syst. Sci., 13, 1467483 2009
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The estimated optimum temperatures for growth (TB)temperature for optimum growth is within the range of the

were 27.2C for corn (complete data), 326 for grain
sorghum, 30.24C for alfalfa and 29.9C for soybean. Several

values used by other simulation models and slightly higher
than those reported from research trials. Our estimated TB

researchers have reported optimum temperatures for growtfor grain sorghum (328 ) agrees with the results Bfasad

in corn to be 22.5C (Wilhelm et al, 1999 and 25C (Grze-

et al. (2006 and Chowdhury and Wardlawl1978 who re-

siak et al, 1981). CERES-Maize uses 26 as the optimum  ported optimum temperatures for growth in grain sorghum to

temperature for growthJones et a).1986 while Yang et
al. (2009 currently use 3%C in the Hybrid Maize model

for maximum growth and assimilation. Our optimized corn 1989, a sorghum simulation model.

www.hydrol-earth-syst-sci.net/13/1467/2009/

be 32 and 38C, respectively. Our TB value is lower than the
44°C that is currently used in SORKAMRpsenthal et al.
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The TB estimate of 30°4 for alfalfa is higher than the prior information implicit in the selected probability sup-
reported values of 20 to 2T cited by several otherg\(bi port points. As just documented, the optimizations reported
et al, 1979 Fick, 1984 Bula, 1972 Ueno and Smith197Q herein did produce reasonable output values. Even so, it is
Pearson and Huntl972. However, our TB value is simi- possible that the data do not constrain the estimates either
lar to the 30C used byConfalonieri and Bechin{2004) in because (1) they are too fragmentary or (2) the parameter’s
their optimization of CropSyst. Our estimate of 2%CIfor influence on actual outcomes is too weak or indirect. It is
soybean is higher than the 24 to 2C5reported bySed-  therefore useful to ask (Q1) do the data detectably influence
digh and Jolliff (1984 and Ghazali and CoX1981J), butis  the outputs and (Q2) how strongly does prior information af-
in agreement witlGibson and Muller(1996 andGrimm et fect the estimates?
al. (1994 who reported optimum temperatures for photosyn-  If a parameter has no influence on the model outputs then
thesis and growth to range from 29 to°85 Our TB is less it cannot affect the penalty function values. In this situation
than that used in CROPGRO-Soybean, which usé€4&  7(p) is optimized whenH is maximized. In a two-point
an optimum temperature for photosynthe#ledersen et al.  distribution this happens when the parameter estimate is the
2009. midpoint of the support interval no matter where the end-

The estimated minimum temperatures for growth (TG) points are located. Based on this fact, metrics for Q1 and
were 8.2C for corn (complete data), 6€ for grain Q2 were developed and applied to the ten percent corn sam-
sorghum, 0.5C for alfalfa, and 10.7C for soybean. These ple. The Q1 metric calculates a two-tailed, binomial distri-
estimates are similar to those reported by others from fieldbution p-value for the null hypothesis that the median of the
or growth chamber research or currently being used in otheP50 re-sampled parameter estimates is the midpoint of the
crop simulation models. Reported corn TG values rangesupport range. A p-value of less than 0.05 is interpreted as
from 7.2 to 8C (Hesketh and Warringtori989 Yang et  a significant data influence. The easiest way to measure de-
al., 2009. For grain sorghum, a TG of &8 is reported by  pendence on the support point choice is to make a different
both Craufurd et al(1998 andHammer et al(1989 while choice. Thus, the Q2 metric is a finite difference estimate of
SORKAM (Rosenthal et 811989 uses 7C as a base tem- the derivative of the parameter estimate with respect to the
perature, all of which are marginally higher than the°’€2 midpoint of the parameter range. Values close to unity are
estimated here. consistent with the estimate being completely dependent on

Estimates of TG for alfalfa of 0% are lower than the prior information. Ten sets of 20 estimations were run with
5°C used byConfalonieri and Bechinf2004) in calibrating  the range of a single parameter changed in each set. The
CropSyst for simulating alfalfa in Italy. Our TG of 10Q ranges were shifted up or down depending on whether the
for soybean is greater than that used in CROPGRO-Soybeamajority of the original estimates did or did not exceed the
which uses 8C as base temperature for photosyntheResd¢  midpoint. Range widths were preserved unless doing so re-
ersen et a).2009. sulted in an endpoint that was (1) outside the range suggested

Estimates of when leaf area begins to decline (DLAI), theby EPIC, or (2) conflicted with the range of another parame-
rate of decline (RLAD) and the rate at which WA declines ter.

(RBMD) could be deemed reasonable based on typical pro- The results are in Tab All but three parameters (DLAI,
duction scenarios. For all four crops, the values for DLAI RLAD and RBMD) are influenced by the data with more
indicate that leaf area begins to decline after around 86% osignificant median departures from the support interval mid-
the growing season has occurred. Leaf area typically beginpoints being generally associated with lower sensitivities to
a gradual decline in corn and grain sorghum within approxi-prior information. It is clear, however, that the Q1 and Q2
mately 1 week of anthesis, but this largely occurs in the lowermetrics measure different properties of the e