Ballio, F. and Guadagnini, A.: Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology, Water Resour. Res., 40, W04603, https://doi.org/10.1029/2003WR002876, 2004.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Proc., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, 2001.
Bishop, C. M.: Neural networks for pattern recognition, Clarendon-Press, Oxford, 504 pp., 1995.
Blasone, R. S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, G. A.: Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling, Adv. Water Resour., 31, 630–648, https://doi.org/10.1016/j.advwatres.2007.12.003, 2008.
Bowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination for neural network models in water resources applications, Part 1 - background and methodology, J. Hydrol., 301, 93-107, https://doi.org/10.1016/j.jhydrol.2004.06.020, 2005.
Braun, L. N. and Renner, C. B.: Application of a conceptual runoff model in different physiographic regions of Switzerland, Hydrol. Sci. J., 37, 217–232, 1992.
Dawson, C. W. and Wilby, R. L.: Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25, 80–108, https://doi.org/10.1177/030913330102500104, 2001.
Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott, M. B.: Model induction with support vector machines: Introduction and applications, J. Comput. Civil Eng., 15, 208–216, 2001.
Freer, J., Beven, K., and Ambroise, B.: Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 32, 2161–2173, 1996.
Georgakakos, K., Seo, D.-J., Gupta, H. V, Schaake, J., and Butts, M. M.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, https://doi.org/10.1016/j.jhydrol.2004.03.037, 2004.
Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: efficient adaptive MCMC, Stat. Comput., 16, 339–354, https://doi.org/10.1007/s11222-006-9438-0, 2006.
Harr, M.: Probabilistic estimates for multivariate analyses, Appl. Math. Model., 13, 313–318, https://doi.org/10.1016/0307-904X(89)90075-9, 1989.
Haykin, S.: Neural networks: A comprehensive foundation. Prentice-Hall, Upper Saddle River, NJ, USA, 1999.
Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, https://doi.org/10.1029/2005WR004368, 2006.
Klir, G. J. and Yuan, B.: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by: Zadeh, L. A., World Scientific Publishing Co. Inc., River Edge, NJ, USA, 840 pp., 1996. \bibitem[{Khan and Coulibaly (2006)}] khan2006bnn Khan, M. S. and Coulibaly, P.: Bayesian neural network for rainfall-runoff modeling, Water Resour. Res., 42, W07409, https://doi.org/10.1029/2005WR003971, 2006.
Khu, S.-T. and Werner, M. G. F.: Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling, Hydrol. Earth Syst. Sci., 7, 680–692, 2003.
Kuczera, G. and Parent, E.: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, J. Hydrol., 211, 69–85, 1998.
Kuczera, G., Kavetski, D., Franks, S. W., and Thyer, M.: Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters, J. Hydrol., 331, 161–177, https://doi.org/10.1016/j.jhydrol.2006.05.010, 2006.
Kunstmann, H., Kinzelbach, W., and Siegfried, T.: Conditional first-order second-moment method and its application to the quantification of uncertainty in groundwater modeling, Water Resour. Res., 38, 1035, https://doi.org/10.1029/2000WR000022, 2002.
Li, G., Azarm, S., Farhang-Mehr, A., and Diaz, A.: Approximation of multiresponse deterministic engineering simulations: a dependent metamodeling approach, Struct. Multidiscip. O., 31, 260–269, https://doi.org/10.1007/s00158-005-0574-5, 2006.
Lindstr{ö}m, G., Johansson, B., Persson, M., Gardelin, M., and Bergstr{ö}m, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, 1997.
Maier, H. R. and Dandy, G. C.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Softw., 15, 101–124, 2000.
Mantovan, P. and Todini, E.: Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, J. Hydrol., 330, 368–381, https://doi.org/10.1016/j.jhydrol.2006.04.046, 2006.
Melching, C. S.: An improved-first-order reliability approach for assessing uncertainties in hydrologic modeling, J. Hydrol., 132, 157–177, 1992.
Melching, C. S.: Reliability estimation in computer models of watershed hydrology, Water Res. Publ., 69–118, 1995.
Montanari, A. and Brath, A.: A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, https://doi.org/10.1029/2003WR002540, 2004.
Montanari, A.: Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 41, W08406, https://doi.org/10.1029/2004WR003826, 2005.
Moradkhani, H., Hsu, K.-L., Gupta, H. V., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models – Part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
O'Hagan, A.: Bayesian analysis of computer code outputs: A tutorial, Reliab. Eng. Syst. Safe., 91, 1290–1300, https://doi.org/10.1016/j.ress.2005.11.025, 2006.
Protopapas, A. and Bras, R.: Uncertainty propagation with numerical models for flow and transport in the unsaturated zone, Water Resour. Res., 26, 2463–2474, 1990.
Rosenblueth, E.: Two-point estimates in probability, Appl. Math. Model., 5, 329–335, https://doi.org/10.1016/S0307-904X(81)80054-6, 1981.
Shrestha, D. L. and Solomatine, D. P.: Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19, 225–235, https://doi.org/10.1016/j.neunet.2006.01.012, 2006.
Solomatine, D. P. and Shrestha, D. L.: A novel method to estimate model uncertainty using machine learning techniques, Water Resour. Res., 45, W00B11, https://doi.org/10.1029/2008WR006839, 2009.
Thiemann, M., Trosset, M., Gupta, H. V., and Sorooshian, S.: Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37, 2521–2535, 2001.
Tung, Y.-K.: Uncertainty and reliability analysis, in: Water Resources Handbook, edited by: Mays, L. W., McGraw-Hill Book Company, 7.1–7.64, 1996.
Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V. R. N., Verhoest, N. E. C., and De Troch, F. P.: Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics, J. Hydrol., 302(1–4), 173–186, 2005.
Vrugt, J. A., Diks, C., Gupta, H. V., Bouten, W., and Verstraten, J. M.: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, https://doi.org/10.1029/2004WR003059, 2005.
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, 1201, https://doi.org/10.1029/2002WR001642, 2003.
Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43, W01411, https://doi.org/10.1029/2005WR004838, 2007.
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M, and Robinson, B. A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backwards with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, https://doi.org/10.1029/2007WR006720, 2008.
Xiong, L. and O'Connor, K.: An empirical method to improve the prediction limits of the GLUE methodology in rainfall-runoff modeling, J. Hydrol., 349, 115–124, https://doi.org/10.1016/j.jhydrol.2007.10.029, 2008.
Young, P. C.: Data-based mechanistic modelling of environmental, ecological, economic and engineering systems, Environ. Modell. Softw., 13, 105–122, https://doi.org/10.1016/S1364-8152(98)00011-5, 1998.
Young, P. C. and Ratto, M.: A unified approach to environmental systems modeling, Stoch. Env. Res. Risk A., 10, 008–0271, https://doi.org/10.1007/s00477-008-0271-1, 2008.