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Abstract. In this study, a methodology has been developed
to emulate a time consuming Monte Carlo (MC) simulation
by using an Artificial Neural Network (ANN) for the assess-
ment of model parametric uncertainty. First, MC simulation
of a given process model is run. Then an ANN is trained to
approximate the functional relationships between the input
variables of the process model and the synthetic uncertainty
descriptors estimated from the MC realizations. The trained
ANN model encapsulates the underlying characteristics of
the parameter uncertainty and can be used to predict uncer-
tainty descriptors for the new data vectors. This approach
was validated by comparing the uncertainty descriptors in the
verification data set with those obtained by the MC simula-
tion. The method is applied to estimate the parameter un-
certainty of a lumped conceptual hydrological model, HBV,
for the Brue catchment in the United Kingdom. The results
are quite promising as the prediction intervals estimated by
the ANN are reasonably accurate. The proposed techniques
could be useful in real time applications when it is not prac-
ticable to run a large number of simulations for complex hy-
drological models and when the forecast lead time is very
short.

1 Introduction

The uncertainty analysis of hydrological models in recent
years received special attention. Several uncertainty analysis
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methods have been developed to propagate the uncertainty
through the hydrological models and to derive meaningful
uncertainty bounds of the model simulations. These meth-
ods range from analytical and approximation methods (see,
e.g.,Tung, 1996; Melching, 1992) to Bayesian and Monte
Carlo (MC) sampling based methods (e.g.,Kuczera and Par-
ent, 1998; Beven and Binley, 1992; Vrugt et al., 2003; Thie-
mann et al., 2001), methods based on the analysis of model
errors (e.g.,Montanari and Brath, 2004; Shrestha and Solo-
matine, 2008; Solomatine and Shrestha, 2009), and methods
based on fuzzy set theory (see, e.g.,Maskey et al., 2004).
The majority of these methods deal only with a single source
of uncertainty and consider model uncertainty to be mostly
produced by parameter uncertainty assuming that the model
structure is correct and the input data is free from errors.
Only recently new techniques have been emerging such as
data assimilation techniques (Vrugt et al., 2005; Moradkhani
et al., 2005), multi model averaging techniques (see, e.g.,
Ajami et al., 2007; Vrugt and Robinson, 2007; Georgakakos
et al., 2004), Bayesian approaches (Kavetski et al., 2006;
Kuczera et al., 2006), and efficient Markov chain Monte
Carlo (MCMC) techniques (Haario et al., 2006; Vrugt et al.,
2008) to explicitly treat two or more sources of uncertainty
such as input, parameter and structure uncertainty.

MC simulation technique is a widely used method for
uncertainty analysis in hydrological modelling and allows
the quantification of the model output uncertainty result-
ing from uncertain model parameters, input data or model
structure. The approach involves random sampling from the
distributions of the uncertain inputs and the model is run
successively until a desired statistically significant distribu-
tion of outputs is obtained. The main advantage of the MC
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simulation based uncertainty analysis is its general applica-
bility; however, methods of this type require a large num-
ber of samples (or model runs), so their applicability may
be limited to simple models. In the case of computationally
intensive models, the time and resources required by these
methods could be prohibitively expensive.

A version of the MC simulation method was introduced
under the term “generalised likelihood uncertainty estima-
tion” (GLUE) by Beven and Binley(1992). GLUE is one
of the popular methods for analysing parameter uncertainty
in hydrological modelling and has been widely used over
the past ten years to analyse and estimate predictive un-
certainty, particularly in hydrological applications (see, e.g.,
Freer et al., 1996; Beven and Freer, 2001; Montanari, 2005).
Users of GLUE are attracted by its simple understandable
ideas, relative ease of implementation and use, and its ability
to handle different error structures and models without ma-
jor modifications to the method itself. Despite its popular-
ity, there are theoretical and practical issues related with the
GLUE method as is reported in the literature. For instance,
Mantovan and Todini(2006) argue that GLUE is inconsistent
with the Bayesian inference processes such that it leads to
an overestimation of uncertainty, both for the parameter and
the predictive uncertainty estimation. For issues regarding
inconsistency and other criteria, readers are referred to the
citation above and the subsequent discussions in the Journal
of Hydrology in 2007 and 2008. A practical problem with
the GLUE method is that, for models with a large number
of parameters, the sample size from the respective parameter
distributions must be very large in order to achieve a reliable
estimate of model uncertainties (Kuczera and Parent, 1998).
In order to reduce the number of samples (i.e., model runs)
a surrogate model of the model response surface can be ap-
plied (see, e.g.,Khu and Werner, 2003). Blasone et al.(2008)
used adaptive MCMC sampling within the GLUE methodol-
ogy to improve the sampling of the high probability density
region of the parameter space. Another practical issue is that
in many cases the percentage of observations falling within
the prediction limits provided by GLUE is much lower than
the given confidence level used to produce these prediction
limits (see, e.g.,Montanari, 2005). Xiong and O’Connor
(2008) modified the GLUE method to improve the efficiency
of the GLUE prediction limits in enveloping the observed
discharge.

The MC based method for uncertainty analysis of the out-
puts of hydrological models is very flexible, conceptually
simple and straightforward, but becomes impractical in real
time applications when there is little time to perform the
uncertainty analysis because of the large number of model
runs required. For such situations alternative approxima-
tion methods have been developed, and referred to as mo-
ment propagation techniques, which are able to calculate di-
rectly the first and second moments without the application
of an MC simulation (see, e.g.,Rosenblueth, 1981; Harr,
1989; Protopapas and Bras, 1990; Melching, 1995; Kunst-

mann et al., 2002). A number of research studies have been
conducted to reduce the number of MC simulation runs ef-
fectively, for instance, Latin Hypercube sampling (see, e.g.,
McKay et al., 1979), and, more recently, the delayed re-
jection adaptive Metropolis method (Haario et al., 2006),
and the differential evolution adaptive Metropolis method,
DREAM (Vrugt et al., 2008). In these Metropolis algorithm-
based uncertainty analysis methods, the comparison of the
statistics of multiple sample chains in parallel would provide
a formal solution to assess how many model runs are required
to reach convergence and obtain stable statistics of the model
output and parameters. In spite of the improved efficiency
of the MC methods, it is well recognized that traditional MC
based simulation still lacks a well-established convergence
criterion to terminate the simulations at a desired level of ac-
curacy (e.g.,Ballio and Guadagnini, 2004).

We propose to use artificial neural networks (ANNs) to
emulate the uncertainty of a model output (this latter model
will be further referred asM). The idea of using statistical
and, in general, machine learning models, to improve model
accuracy is not new. Typically, information about model er-
rors is used to train data-driven error correctors (Abebe and
Price, 2004) or to build more sophisticated data-driven mod-
els of model uncertainty (Shrestha and Solomatine, 2006,
2008). In this study, we extend this idea towards building a
model (referred to asV ) encapsulating the information about
the realizations of the process (e.g., hydrological) modelM

output generated by the MC simulations. Instead of predict-
ing a single value of the model error, as done in the most
error correction procedures, we aim to predict the distribu-
tion of the output ofM generated by the MC based simu-
lations. Thus, the method allows one to predict the uncer-
tainty bounds of the modelM prediction without re-running
the MC simulations when newly observed input data is fed
into M, while the MC based uncertainty analysis methods
require a fresh set of the MC runs for each analysis. For in-
stance, GLUE will typically require a fresh set of the MC
runs from the behavioural models to produce the prediction
intervals (PIs) of the model output for each time step with the
new data input.

The proposed technique to emulate the complex model
by a simple model is an example of surrogate modelling, or
meta-modelling - an approach widely used when running the
complex model could be computationally expensive. For ex-
ample,O’Hagan(2006) used the Gaussian process emulator
to emulate a complex simulation model.Li et al. (2006) in-
troduced an approach to meta-modelling whereby a sequen-
tial technique is used to construct and simultaneously update
mutually dependent meta-models for multi-response, high-
fidelity deterministic simulations.Young and Ratto(2008)
proposed a dynamic emulation model to emulate a complex
high order model by a low order data based mechanistic
model. The novelty of our approach can be described as:

Hydrol. Earth Syst. Sci., 13, 1235–1248, 2009 www.hydrol-earth-syst-sci.net/13/1235/2009/



D. L. Shrestha et al.: A novel approach to parameter uncertainty analysis 1237

1. Our method explicitly builds an emulator of the MC
uncertainty results rather than of a single simulation
model.

2. Our emulator is based on a machine learning technique,
while other techniques are Bayesian (e.g.,O’Hagan,
2006), use non-linear differential equations (e.g., the
data based mechanistic model ofYoung, 1998).

In this study, we consider only parameter uncertainty of
the process model and employ the GLUE method to analyse
it. It is worthwhile to note that our method can be used with
other uncertainty analysis methods and can be applied for
analysing other sources of uncertainty as well. The approach
is tested on estimating two quantiles of the MC realizations
of the process model. Thus, the model parameter uncertainty
is measured by only two quantiles of the probability distribu-
tion that constitutes the PIs of the model output correspond-
ing to some confidence level (e.g. 90%). The HBV hydro-
logical model of the Brue catchment in the United Kingdom
is used as a case study. An ANN is used as a surrogate model
to estimate the PIs of the HBV model outputs.

2 Main application of ANN in hydrological modelling

ANN is a popular technique used to discover a dependency
between inputs and outputs of a physical system from the
available data. By data we understand the known samples
combinations of inputs and corresponding outputs. As such a
dependency (“model”) is discovered, it can be used to predict
the future system’s outputs from the known input values.

ANNs have been extensively used in hydrological mod-
elling in past ten years, particularly in rainfall-runoff mod-
elling (Minns and Hall, 1996; Dawson and Wilby, 2001;
Abrahart and See, 2000; Govindaraju and Rao, 2000).
Apart from ANN, other machine learning techniques have
been also used: for example, fuzzy rules based systems
(Vernieuwe et al., 2005; Jacquin and Shamseldin, 2006; Klir
and Yuan, 1996), model trees (Solomatine and Dulal, 2003),
and support vector machines (Dibike et al., 2001). However,
the application of such techniques to estimate the uncertainty
of physically based or data-driven hydrological models is
very limited. Abebe and Price(2004) used an ANN to fore-
cast the surge prediction accuracy along the Dutch coast in
North Sea. Shrestha and Solomatine(2006) used machine
learning techniques to estimate non-parametric uncertainty
of river flow forecasting by an ANN and other machine learn-
ing techniques in the Sieve river basin, Italy.Shrestha and
Solomatine(2008) andSolomatine and Shrestha(2009) used
machine learning techniques to estimate uncertainty of the
simulated river flows by a conceptual rainfall-runoff model to
various case studies. More information about ANNs can be
found inBishop(1995) andHaykin(1999), and the overview
of ANN applications within hydrology can be found inMaier

and Dandy(2000), andDawson and Wilby(2001). In this pa-
per, however, ANNs are not used for hydrological prediction,
but to encapsulate the data generated by MC simulations.

3 Methodology

3.1 Basic idea

There are a number of assumptions to consider. First, we
assume that the uncertainty of a hydrological model output
depends on the forcing input data and the model states (e.g.,
rainfall, antecedent rainfall, soil moisture etc.). We also as-
sume that the uncertainty associated with the prediction of
the hydrological variables, e.g. runoff, has similar magnitude
for similar hydrological conditions. By the hydrological con-
ditions we understand here the combination of the state of
the input data and the state variables, which are forcing or
driving the generation of the runoff in the catchment. For
example, one can see that, compared to the low flows, it is
more difficult to predict extreme events such as peak flows.
Consequently, uncertainty of the prediction of the peak flow
is higher compared to those for low flows.

Instead of building a model of the error in the process
model output, as it is done in the most of the error updating
procedures (e.g.,Abebe and Price, 2003), in the presented
approach a predictive model for the parameters of the distri-
bution of the process model output is built (this distribution is
generated by the MC simulations). Thus, our method allows
for predicting the uncertainty bounds of the model prediction
without running the MC simulations in a real time applica-
tion. Indeed, MC simulations are emulated by ANN models.

3.2 Definition of the process modelM

Consider a deterministic modelM of a real world system pre-
dicting a system output variabley given the input data vector
x, the initial condition of the state variablesso and the vec-
tor of the parametersθ . The modelM could be physically
based, conceptual, or even data driven. In this paper we as-
sumed the modelM is a conceptual hydrological model. The
system response can be represented by:

y = M(x, s, θ) + ε = ŷ + ε (1)

whereε is the the model error between the observed response
y and the corresponding model responseŷ . Before running
the modelM, the components of the model, i.e. input datax,
initial conditionsso, parameters vectorθ and the model struc-
ture, itself have to be specified, while the output or model re-
sponsêy and the state variables are computed by running the
model. These components may be uncertain in various ways
to various degrees; the consequences of these uncertainties
will be propagated into the model states and the outputs. In
this paper, however, only uncertainty associated with param-
eters vectorθ is considered.
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3.3 Monte Carlo simulation

The MC simulation is performed by running the hydrological
modelM multiple times either changing the input datax or
the parameters vectors or even the structure of the model,
or a combination of them. In this paper we assume that the
model structure and the input data are certain (correct), so
mathematically this can be expressed as:

ŷt,i = M(x, θi); t = 1, 2, ..., n; i = 1, 2, ..., s (2)

whereθi is the set of parameters sampled for theith run of
the MC simulation,ŷt,i is the model output of thet th time
step for theith run,n is the number of time steps ands is the
number of simulations.

3.4 Estimation of the prediction interval

The statistical properties (such as moments and quantiles) of
the model output for each time stept are estimated from the
realizationsŷt,i . One way to judge the uncertainty of the
model output is to use the error variance: a large variance of
the model error typically indicates that the model prediction
is uncertain. In most cases, however, the variance does not
sufficiently describe the uncertainty, and more informative
quantities such as prediction intervals are used.

A prediction interval (PI) is comprised of upper and lower
limits between which a future unknown value is expected to
lie with the prescribed probability. These limits are typically
the quantiles of the model output distribution. In each sim-
ulation, the model output is given a different weight (to be
defined later), so a quantile can be found using the following
equation:

P(ŷt < Q̂(p)) =

s∑
i=1

wi |ŷt,i < Q̂(p) (3)

where,ŷt is the model output at time stept , ŷt,i , is the value
of model outputs at timet simulated by the modelM(x, θi)

at simulationi, Q̂(p) is pth [0, 1] quantile,wi is the weight
given to the model output at simulationi. Quantiles obtained
in this way are conditioned on the inputs to the model, the
model structure, and the weight vectorwi . In the GLUE
method,wi is the likelihood weight (see Sect. 4.4).

In order to compute the PI of the model simulation
for the given confidence levelα (0<α<1), two quantiles
(1−α)/2*100% and (1+α)/2*100% are estimated from the
ŷt,i . These two quantiles will be called the lower prediction
limit PLL and the upper prediction limit PLU :

Q̂(p) = PLL, where, p = (1 − α)/2 (4)

Q̂(p) = PLU , where, p = (1 + α)/2 (5)

The PI is apportioned into two parts given the outputȳ of
the calibrated (optimal) model as:

PIL = ȳ − PLL, PIU = PLU
− ȳ (6)

where PIL is the distance between the model output and the
lower prediction limit, PIU is the distance between the model
output and the upper prediction limit. FollowingShrestha
and Solomatine(2006), PIL and PIU represent the lower and
upper PI, respectively (although these are not intervals but
distances).

3.5 ANN modelsV for estimation of prediction intervals

To build the modelV that maps the input data and the state
variables to the PIs of the model output that is generated
by the MC simulations, an ANN will be used. Experience
suggests that the model residuals (errors) may show a non-
stationary bias, variance, skewness and autocorrelation over
one or more time steps (Beven and Freer, 2001). This char-
acteristic of the model output distribution motivates us to
build a non-linear regression (ANN) model to approximate
not only the mean and the variance, but also the prediction
interval of the output.

The modelV encapsulating the functional relationship be-
tween the input datax and the lower and upper PI takes the
form:

PIL = VL(XV ) + ξL, PIU = VU (XV ) + ξU (7)

where PIL and PIU are the lower and upper PI computed
from the MC simulations data;VL(XV ) and VU (XV ) are
lower and upper PI estimated by ANN;ξL, ξU are the resid-
ual error in estimating the lower and upper PI, respectively.

ModelV , after being trained, encapsulates the underlying
dynamics of the uncertainty descriptors (in this case lower
and upper PI) of the MC simulations and maps the input
data to these descriptors. The modelV can be of various
types, from linear to non-linear regression models such as
an ANN. The choice of model depends on the complexity
of the problem to be handled, and the availability of data.
Once the modelV is trained on the calibration data, it can
be employed to estimate the uncertainty descriptors such as
PIs for the new input data vector that was not used in any of
the model building process. Once the PIL and PIU are esti-
mated, the prediction limits of the model output is given by
rearranging Eq. (6):

PLL
= ȳ − VL(XV ), PLU

= ȳ + VU (XV ) (8)

3.6 Selection of the input variables for modelV

In order to train the modelV , data setXV should be con-
structed on the basis of the setD={xt , yt }, t=1, 2, ..., n,

(where,xt is the input data vector,yt is the observed data,
n is the number of data) of the hydrological model. Since the
natures of modelsM andV are different, in most cases for
choosing the relevant input variables forXV additional anal-
ysis of relationships between the PIs and the variables consti-
tutingD is needed. Such analysis is typically based on corre-
lation and average mutual information (AMI). While corre-
lation analysis is used to find the linear relationship between
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the variables, mutual information analysis is used to deter-
mine linear or non-linear the dependencies between the vari-
ables. The mutual information is a measure of information
available from one set of data having knowledge of another
set of data. The average mutual information AMI (Fraser and
Swinney, 1986) between two variablesX andY is given by

AMI =

∑
i,j

PXY (xi, yj ) log2

[
PXY (xi, yj )

PX(xi)PY (yj )

]
(9)

wherePX(x) andPY (y) are the marginal probability density
functions ofX andY , respectively, andPXY (x, y) is the joint
probability density functions ofX andY . A high value of
the AMI would indicate a strong dependence between two
variables.

For example, if the modelM is a conceptual hydrologi-
cal model, it would typically use rainfall and evapotranspira-
tion as input variables to simulate the output variable runoff.
However, the uncertainty modelV whose aim is to predict
the probability distribution of the MC simulations will be
trained with the possible combination of the lagged variables
(i.e. past values) of rainfall and evapotranspiration or effec-
tive rainfall and runoff. It is worthwhile to mention that the
input data structure may not be the same for the modelsV L

andV U of the lower and upper PI, respectively.

3.7 Models performance indicators

The uncertainty modelV can be validated in two ways: a)
by measuring its predictive capability; and b) by measuring
the statistics of the uncertainty. The former approach mea-
sures the accuracy of uncertainty models in approximating
the quantiles of the probability distribution of the model out-
put generated by the MC simulations. The latter approach
measures the goodness of the uncertainty models as uncer-
tainty estimators.

Two performance measures such as the coefficient of cor-
relation, CoC and the root mean squared error, RMSE are
used to measure the predictive capability of the uncertainty
model. Beside these numerical measures, the graphical plots
such as scatter and hydrograph plot of the quantile of the
model output obtained from the MC simulation and their pre-
dicted values can be analysed to judge the accuracy of the
predictive uncertainty modelV (in this study ANN model).

The goodness of the uncertainty models is evaluated based
on uncertainty measures using the so-called prediction inter-
val coverage probability, PICP and the mean prediction inter-
val, MPI (Shrestha and Solomatine, 2006). The PICP mea-
sures the probability that the observed values lie within the
estimated PIs and it is estimated as:

PICP=
1

n

n∑
t=1

C (10)

with C=

{
1, PLL

t ≤ yt ≤ PLU
t ;

0, otherwise.
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Fig. 1. The Brue catchment showing dense rain gauges network
(reproduced fromShrestha and Solomatine(2008) with permission
from the International Association for Hydraulic Research). The
horizontal and vertical axes refer to the easting and northing in
British national grid reference co-ordinates.

Fig. 2. Schematic representation of the HBV model with routines
for snow, soil and runoff response (reproduced fromShrestha and
Solomatine(2008) with permission from the International Associa-
tion for Hydraulic Research).

The MPI estimates the average width of the PIs and gives
an indication of how high is the uncertainty:

MPI =
1

n

n∑
t=1

(PLU
t − PLL

t ) (11)

Theoretically, the value of PICP should be close to the pre-
scribed degree of confidence. If there is no uncertainty, the
value of MPI is zero.
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Table 1. The statistical properties of the runoff data.

Statistical properties Complete data Calibration data Verification data

Period (day/month/year hour) 24/06/1994 05:00 – 24/06/1994 05:00 – 24/06/1995 05:00 –
31/05/1996 13:00 24/06/1995 04:00 31/05/1996 13:00

Number of data 16977 8760 8217
Average (m3/s) 1.91 2.25 1.53
Minimum (m3/s) 0.15 0.17 0.14
Maximum (m3/s) 39.58 39.58 29.56
Standard deviation (m3/s) 3.14 3.68 2.37

4 Application

4.1 Study area

The Brue catchment located in the South West of England,
UK is selected for the application of the methodology. The
catchment has a drainage area of 135 km2 with the aver-
age annual rainfall of 867 mm and the average river flow of
1.92 m3/s, for the period from 1961 to 1990. The discharge is
measured at Lovington. The hourly potential evapotranspira-
tion was computed using the modified Penman method rec-
ommended by FAO (Allen et al., 1998). Splitting of the avail-
able data set is based onShrestha and Solomatine(2008),
one year hourly data from 24 June 1994, 05:00:00 to 24 June
1995, 04:00:00 was selected for calibrating the HBV hydro-
logical model, running MC simulations to generate data for
uncertainty modelV and training modelV . Data from 24
June 1995, 05:00:00 to 31 May 1996, 13:00:00 was used for
validating the hydrological model, running MC simulations
to generate data for validating uncertainty modelV . Each of
the two data sets represents almost a full year of observations,
and their statistical properties are shown in Table 1.

4.2 Conceptual hydrological model

A simplified version of the HBV model (Fig.2) was used.
Input data are observations of precipitation, air temperature,
and estimates of potential evapotranspiration. The detailed
description of the model can be found inLindström et al.
(1997).

4.3 Experimental setup

The nine parameters of the HBV model are listed in Table1.
The model was first calibrated using the global optimization
routine – adaptive cluster covering algorithm, ACCO (Solo-
matine et al., 1999) to find the best set of parameters, which
was followed by manual adjustments of the parameters. The
ranges of parameters for automatic calibration and for param-
eter uncertainty analysis were based on a range of calibrated
values from other model applications (e.g.,Braun and Ren-
ner, 1992) and the hydrologic descriptions of the catchment.
The ranges were extended when the solutions were found
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Fig. 3. Observed and simulated discharge hydrographs in a part of
calibration (training+cross−validation) and verification period.

near the border of the parameter ranges, and re-calibration of
the model was done with the extended ranges of the param-
eters. Sometimes automatic calibration gives the parameter
values which do not represent the physical process well in all
situations. Therefore, manual fine tuning of the parameters
followed the automatic procedure by visual comparison of
the observed and simulated hydrograph.

The model was calibrated using Nash-Sutcliffe model ef-
ficiency, CoE (Nash and Sutcliffe, 1970) as a performance
measure of the HBV model. For the calibration period, the
CoE was 0.96. The model was validated by simulating the
flows for the independent verification data set, and the CoE
was 0.83. Figure3 shows the observed and simulated hydro-
graph in both calibration and verification period.

4.4 MC simulation and its convergence analysis

The parameters of the HBV model are sampled from the uni-
form distribution with the ranges given in Table1. The model
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Table 2. The ranges and calibrated value of the Hydrologiska Byråns Vattenbalansmodell (HBV) model parameters. The uniform ranges
of parameters are used for calibration of the HBV model using the adaptive cluster covering algorithm and for analysis of the parameter
uncertainty by MC simulations method.

Parameter Description and unit Ranges Calibrated
value

FC Maximum soil moisture content (mm) 100–300 160.33
LP Limit for potential evapotranspiration 0.5–0.99 0.527
ALFA Response box parameter 0–4 1.54
BETA Exponential parameter in soil routine 0.9–2 1.963
K Recession coefficient for upper tank (/hour) 0.0005–0.1 0.001
K4 Recession coefficient for lower tank (/hour) 0.0001–0.005 0.004
PERC Percolation from upper to lower

response box (mm/hour) 0.01–0.09 0.089
CFLUX Maximum value of capillary flow (mm/hour) 0.01–0.05 0.038
MAXBAS Transfer function parameter (hour) 8–15 12.00

is run for each random parameter set and the likelihood mea-
sure is computed for each model run. We use the sum of the
squared errors as the basis to calculate the likelihood measure
(seeFreer et al., 1996) in the form:

L(θi/D) =

(
1 −

σ 2
e

σ 2
obs

)N

(12)

whereL(θi/D) is the likelihood measure for theith model
conditioned on the observationsD, σ 2

e is the associated error
variance for theith model,σ 2

obs is the observed variance for
the period under consideration,N is a user defined parameter.
We setN to 1; in this case Eq. (12) is equivalent to CoE.

We investigated the number of behavioural samples re-
tained out of 74 467 MC samples for different values of the
rejection threshold. It was observed that only 1/3 of simu-
lations (25 000 samples) are accepted for the threshold value
of 0, whereas less than 1/10 of simulations are retained for
the threshold value of 0.7.

We have also tested the convergence of the MC simula-
tions to know the number of samples required to obtain reli-
able results. Since we have used CoE as an objective function
to calibrate the model and as a likelihood measure in GLUE,
we used the same metric to determine the convergence of the
MC simulations. The mean and standard deviation of CoE
were used to analyse the convergence of the MC simulations:

MEk =
1

k

k∑
i=1

(CoEi) (13)

SDEk =

√√√√1

k

k∑
i=1

(CoEi − MEk)2 (14)

where CoEi is the CoE of theith MC run, MEk and SDEk are
the mean and standard deviation of the model efficiency of
the model up to thekth run, respectively. Other statistics for

−1

0

1

Sample size (total =74467)

M
E

1 10 100 1000 10000 80000
0

0.5

1

S
D

E

 

 
ME
SDE

Fig. 4. The convergence of the mean (ME) and the standard devi-
ation (SDE) of Nash-Sutcliffe model efficiency. Note that x-axis is
log scale to see initial variation.

testing convergence can be found inBallio and Guadagnini
(2004). Figure 4 depicts the two statistics – the mean and
standard deviation of the CoE – used to analyse the conver-
gence of MC simulations. It is observed that both statistics
are stable after 5000–10 000 simulations, so 10 000 MC sim-
ulations are reasonable to consider in this case study.

We also carried out experiments with other 9 performance
metrics (e.g., RMSE, absolute error, percentage bias and oth-
ers) for the convergence test. It is observed that the results
are consistent with the CoE metric. Furthermore we also
analysed the convergence of the runoff predictions at some
arbitrary points (e.g., in peak flow, medium flow and base
flow), and the results are quite consistent with the previous
global performance metrics.

4.5 ANN for emulating MC simulation

Once the uncertainty results generated by the MC simula-
tions are obtained, the ANN is trained to learn the functional
relationship between the uncertainty results and the input
data. The GLUE method has been used for the parameter un-
certainty estimation of the HBV model. The threshold value
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Fig. 5. Linear correlation and average mutual information (AMI) between effective rainfall(a) lower prediction interval; and(b) upper
prediction interval for different time lags.

of 0 (measured by CoE) is selected to classify the simula-
tion as either behavioural or non-behavioural. 90% uncer-
tainty bands are calculated using the 5% and 95% quantiles
of the predicted output likelihood weighted distribution re-
sulting from the MC simulation realizations.

The corresponding 90% lower and upper PIs (see Eq.6)
are calculated using the model output simulated by the opti-
mal model parameter sets found byShrestha and Solomatine
(2008). Hence the computed lower and upper PIs are condi-
tional on contemporary value of the model simulation. The
next step was to select the most relevant input variables to
build a predictive ANN model.

It is worth mentioning that we have not studied the uncer-
tainty of the ANN model. However, we have tried to ensure
its high accuracy, and hence lower uncertainty: the number
of hidden neurons was optimized, and different initializations
of ANN weights and biases were tried. For sure, more could
be done to investigate the uncertainty of the resulting ANN,
for example, with the help of Bayesian approaches (see, e.g.,
Khan and Coulibaly, 2006).

4.5.1 Selection of input variables

To select the input variables for the ANN model, several ap-
proaches can be used (see, e.g.,Solomatine and Dulal, 2003;
Guyon and Elisseeff, 2003; Bowden et al., 2005). The input
variables for the modelV are constructed from the rainfall,
evapotranspiration and observed discharge. Experimental re-
sults show that the evapotranspiration alone does not have
a significant influence on the PIs. Thus it was decided not
to include the evapotranspiration as a separate variable, but
rather to use effective rainfall (rainfall minus evapotranspi-
ration for rainfall greater than evapotranspiration and zero
otherwise). The following conventions are used throughout
this manuscript while defining the input variables:

REt−τ : effective rainfall at timet−τ ;
Qt−τ : discharge at timet−τ ; whereτ is lag time (0, 1,

2,...,τmax).
Figure 5 shows the correlation coefficient and the AMI

(see Eq.10) of REt and its lagged variables with the lower

and upper PIs. It is observed that the correlation coefficient
is minimum at a zero hour lag time and increases as the lag
increases up to 7 h (Fig.5b) for the upper PI. The correla-
tion plot (see Fig.5a) for the lower PI is different than the
upper PI. The optimal lag time (the time at which the cor-
relation coefficient and/or AMI is maximum) is 9 h. Such
findings are also supported by the AMI analysis. At optimal
lag time, the variableREt provides the maximum amount
of information about the PIs. Additionally, the correlation
and AMI between the PIs and the observed discharge were
analysed. The results show that the immediate and the recent
discharges (with the lag of 0, 1, 2) have a very high correla-
tion with the PIs. So it was also decided to use the past values
of the observed discharge as additional input to the modelV .

Based on the above analysis, several structures for the in-
put data for the ANN model were considered. The principle
of parsimony was followed to avoid the use of a large num-
ber of inputs, so the aggregates, such as moving averages
or derivatives of the inputs that would have a hydrological
meaning were considered. Typically, the rainfall depth at a
shorter (e.g., an hourly) time step partially exhibits random
behaviour, and is not very representative of the rainfall phe-
nomenon during the short period. Considering the maximum
dependence to 7 h and 9 h lag time, we used two mean effec-
tive rainfall values:

1. REt−7a – the mean ofREt−3, REt−4, REt−5, REt−6,
REt−7; and

2. REt−9a – the mean ofREt−5, REt−6, REt−7, REt−8,
REt−9.

Furthermore, the derivative of the flow indicates whether
the flow situation is either normal or base flow (zero or small
derivative), or can be characterized as the rising limb of the
flood event (high positive derivative), or the recession limb
(high negative derivative). Therefore, in addition to the flow
variableQt−1, the rate of flow change at timet−1 is also
considered.

Table3 presents five possible combinations of input struc-
ture for the two ANN models. Note that these two models
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Table 3. Input data structures of ANN models to reproduce Monte Carlo uncertainty results of the HBV model.

ANN models Lower prediction interval Upper prediction interval

ANN11 REt−9a, Qt−1, 4Qt−1 REt−9a, Qt−1, 4Qt−1
ANN22 REt−7a, Qt−1, 4Qt−1 REt−7a, Qt−1, 4Qt−1
ANN33 REt−7, REt−8, REt−9, Qt−1, 4Qt−1 REt−7, REt−8, REt−9, Qt−1, 4Qt−1
ANN44 REt−9a, Qt−1, Qt−2 REt−9a, Qt−1, Qt−2
ANN12 REt−9a, Qt−1, 4Qt−1 REt−7a, Qt−1, 4Qt−1

are trained independently for the lower and upper PIs; how-
ever, it is possible to use a single ANN model to produce two
outputs given that it has same input structures (e.g., ANN
models ANN11, ANN22, ANN33, ANN44 in Table3).

The structure of the two ANN models to estimate the lower
and upper PI, for instance in ANN11 configuration, takes the
following form:

PILt = VL(REt−9a, Qt−1, 4Qt−1) (15)

PIUt = VU (REt−9a, Qt−1, 4Qt−1) (16)

where, PILt and PIUt are the lower and upper PI fort th time
step, and4Qt−1 isQt−1−Qt−2 (characterizes the derivative
of the previous discharge). Note that we have not usedQt as
input to the ANN model because during the model applica-
tion this variable is not available (indeed, the prediction of
this variable is done by the HBV model and the ANN model
assesses the uncertainty of the prediction). Furthermore, we
would like to stress that in this study the uncertainty of the
model output is assessed when the model is used in simula-
tion mode. However, this method can also be used in fore-
casting mode, provided that the process model is also run in
forecasting mode.

4.5.2 Model training

The same data sets used for the calibration and verification
of the HBV model were used for training and verification of
the modelV , respectively. However, for proper training of
the ANN models the calibration data set is segmented into
two subsets: 15% of data sets for cross-validation (CV) and
85% for training (see Fig.3).

The CV data set was used to identify the best structure of
the ANN. In this paper, a multilayer perceptron network with
one hidden layer was used; optimization was performed by
the Levenberg-Marquardt algorithm. The hyperbolic tangent
function was used for the hidden layer with the linear transfer
function at the output layer. The maximum number of epochs
was fixed at 1000. The trial and error method was adopted
to detect the optimal number of neurons in the hidden layer,
testing a number of neurons from 1 to 10. It was observed
that seven and eight neurons for the lower and upper PI re-
spectively give the lowest error on the CV data set.

4.5.3 Comparison of computational time

The standard MC runs of 25 000 simulations with the HBV
model for hourly resolution data of one year takes about 9 h
CPU time in a standard PC (Pentium Dual core 1.8 GHz,
1.8 GHz, 2 GB RAM) (there is the exchange of data between
the MC code and the model via a file). Training of the
ANN model in this study took about 30 min of CPU time us-
ing Levenberg-Marquardt optimization algorithm including
a couple of iterations to get good results. Time required to
choose the relevant input variables and the data preparation
depends on the modeller’s experience. Generally it may take
a few hours to a day, but this is done once. Afterwards the
trained ANN model is used in operation to predict the uncer-
tainty, while in conventional MC based uncertainty analysis
the process based model has to be run for a large numbers
of times for each time step when prediction is needed. This
prohibits the use of the MC simulation in many real-time ap-
plications, especially for computationally intensive models
where run time of the model might be hundred times greater
than that of the model considered in this study.

5 Results and discussions

Figure6shows the scatter plot of observed and simulated dis-
charge by HBV model in the verification period. For many
data points the HBV model is quite accurate but its error
(uncertainty) is quite high during the peak flows. It is ob-
served that residuals are autocorrelated and heteroscedastic
(see, e.g.,Shrestha and Solomatine, 2008). This can be ex-
plained by the fact that the version of the HBV model used
in this study is the lumped model and one cannot expect high
accuracy from it. Furthermore input data might be erroneous.

The ANN based uncertainty modelV trained on the data
generated by the MC simulations, was tested in the verifi-
cation data set; its performance is shown in Table4. All
ANN models are characterized by similar values of the co-
efficient of correlation (CoC) in the CV data set producing
a lower PI. In the verification data set, ANN11 or ANN12
(note that configurations ANN11 and ANN12 have the same
ANN model for the lower PI), ANN44 have the highest CoC
value. In producing the upper PI, ANN22 or ANN12 (con-
figurations ANN22 and ANN12 have the same ANN model
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Table 4. Performances of different ANN models measured by the coefficient of correlation (CoC), the prediction interval coverage proba-
bility (PICP) and the mean prediction interval (MPI).

ANN configurations CoC for lower prediction interval CoC for upper prediction interval PICP MPI
Training CV Verification Training CV Verification Verification Verification

ANN11 0.91 0.95 0.86 0.80 0.86 0.80 77.00 2.09
ANN22 0.92 0.95 0.83 0.83 0.88 0.79 81.78 2.24
ANN33 0.91 0.95 0.79 0.75 0.84 0.76 73.70 1.90
ANN44 0.90 0.96 0.86 0.79 0.88 0.80 73.99 1.93
ANN12 0.91 0.95 0.86 0.83 0.88 0.79 76.55 2.09
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Fig. 6. Scatter plot of observed and simulated discharge by HBV
model in the verification period.

for the upper PI) and ANN44 give the highest CoC value in
the CV data set. Figure7 presents the scatter plots of one of
the ANN models to produce the lower and upper prediction
limits in the verification period. It appears that the CoC val-
ues obtained when predicting the lower prediction limits are
higher than those for the upper prediction limits. This can be
explained by the fact that the upper prediction limits corre-
spond to the higher values of flow (where the HBV model is
less accurate) and have higher variability, which makes the
prediction a difficult task.

We also compared the percentage of the observation data
falling within the PIs (i.e., PICP) produced by the MC sim-
ulations and the ANN models. The value of PICP obtained
by the MC simulations is 77.24%. Note that we specified the
confidence level of 90% to produce these PIs and theoreti-
cally one would expect a PICP value of 90%. However it has
been reported that the PICP obtained by the MC simulations
is normally much lower than the specified confidence level
used to produce the PIs. This low value of PICP is consistent
with the results reported in the literature (see, e.g.,Monta-
nari, 2005; Xiong and O’Connor, 2008). The low efficiency

of the PIs obtained by the MC simulations in enveloping the
real-world discharge observations might be mainly due to the
following three reasons among others:

– The uncertainty in the model structure, the input (such
as rainfall, temperature data) and output discharge data
are not considered in the MC simulations.

– We assumed a uniform distribution and ignored the pa-
rameter correlation. These assumptions could be wrong.

– We employed the GLUE method. The width of the un-
certainty bound obtained by the GLUE method varies
with the rejection threshold and the likelihood measure
to a great extent.

Among the ANN models, ANN22 gives the best result cor-
responding to a PICP value (i.e. 81.78% against the required
90%). However ANN11 and ANN12 gives PICP values very
close to the MC simulation results. The average width of the
PIs (i.e., MPI) by ANN22 is wider; this is one of the rea-
sons to include a little bit more observed data inside the PIs.
ANN33 gives the lowest MPI value with the lowest PICP
value. The MPI values of ANN11 and ANN12 are very close
(almost equal) to the MC simulation results.

Figure8 shows the comparison of the 90% PIs estimated
by the MC simulations with 5 different ANN configurations
of the input data in the verification period. We also compared
the PIs of ANN12 with those of ANN11 (Fig.8a and b),
ANN22 (Fig.8c and d), ANN33 (Fig.8e and f), and ANN44
(Fig. 8g and h). It is observed that the upper PI on peaks are
overestimated by ANN11 compared to ANN12. Note that
the lower PIs of ANN11 and ANN12 coincide because the
input structures of the ANN11 and ANN12 for the lower PIs
are the same. One can see from Fig.8c and d that ANN22
and ANN12 give similar results with a slight underestimation
of the lower PI. In this comparison, the upper PI of ANN22
and ANN12 coincide because of the same input structures
for the upper PI. One can see a noticeable difference be-
tween ANN33 and ANN12 for both the upper and the lower
PI. Most of the upper PIs on the peaks are overestimated by
ANN33 and the lower PIs on most of peaks are considerably
underestimated. This result is not surprising if one analyses
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Fig. 7. Scatter plots showing the performance of the ANN model to reproduce 90% prediction limits (PL) of MC simulations in the
verification data set.(a) 90% lower PL(b) 90% upper PL. X-axes show the prediction limits obtained by MC simulations and Y-axes show
the prediction limits estimated by ANN.
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Fig. 8. A comparison of the 90% PIs estimated by the MC simulations (darker shaded region) and ANN12 (thick lines) with (a andb)
ANN11, (c andd) ANN22, (e and f) ANN33, and (g andh) ANN44 in parts of the verification period. The black dots indicate observed
discharges and the thin lines denote the 90% PIs obtained by ANN11, ANN22, ANN33, ANN44.

the structure of the input data. The obvious reason is that the
input data consists of instantaneous values ofREt−7, REt−8,
REt−9, while in the other models we used a moving average
value of effective rainfall, and thus the smooth function of the
ANN is produced. Figure8g and h shows that inclusion of
the input4Qt−1 does not improve the accuracy as expected.
However overestimation of the upper PIs on the peaks is due

to the combined effect of consideringREt−9 (while upper PI
have maximum correlation at 7 h) and of not using4Qt−1.

From the above analysis it can be concluded that model
ANN12 is relatively better: it produces 90% PIs close to PIs
obtained by the MC simulation. It can be said that in gen-
eral most of the ANN models (except ANN33) reproduce the
MC simulations uncertainty bounds reasonably well except
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for some peaks, in spite of the low correlation of the input
variables with the PIs. Although some errors can be noticed,
the predicted uncertainty bounds follow the general trend
of the MC uncertainty bounds. Noticeably, the model fails
to capture the observed flow during one of the peak events
(Fig. 8a, c, e, and g). Note however, that the results of the
ANN model and the MC simulations are visually closer to
each other than both of them to the observed data.

It is also observed from Fig.8 that the model prediction
uncertainty caused by parameter uncertainty is rather large.
There could be several reasons for this including:

– The GLUE method does not strictly follow the Bayesian
inference process (Mantovan and Todini, 2006), which
leads to an overestimation of the model prediction un-
certainty.

– In the GLUE method, the uncertainty bound very much
depends on the rejection threshold to distinguish be-
tween the behavioural and non-behavioural models. In
this study we used a quite low value of the rejection
threshold (CoE value of 0) which produces relatively
wider uncertainty bounds.

– We considered only parameter uncertainty assuming
that the model structure and the input data are correct.
As mentioned at the beginning of this section, the scat-
ter plot reveals that this assumption is not really correct.

6 Conclusions

This paper presents a method to emulate the results of the
Monte Carlo simulations in the form of a predictive ANN
model. The method is computationally efficient and can
be used in real time applications when the large number of
model runs required, and is applicable to hydrological mod-
els among other mathematical models.

There are basically three main steps involved in the pro-
posed method:

1. Running an MC based uncertainty analysis method to
generate data for the ANN uncertainty model;

2. Preprocessing and analysing the data to select relevant
input variables for the ANN uncertainty model; and

3. Building and training the ANN model.

The ANN models are first trained on the data generated by
the MC simulations to encapsulate the relationship between
the hydrometeorological variables and the characteristics of
the model output probability distribution (e.g., quantiles or
prediction intervals, PIs), and then the trained ANN mod-
els are used to estimate the uncertainty descriptors such as
PIs for the new input data. The MC simulations are done
off-line only to generate the data to train the ANN, while

the trained ANN models are employed to estimate the un-
certainty in a real time application without running the MC
simulations any more.

In this study, two separate ANN models are used to esti-
mate the two quantiles (5% and 95%) forming the 90% PIs.
However, the methodology can be extended to predict sev-
eral quantiles of the model outputs, that is, in fact, estimating
the shape of the probability distribution of the model out-
put generated by the MC simulations. The conceptual hy-
drological model HBV was applied to the Brue catchment
in the United Kingdom and used as a case study. The re-
sults demonstrate that the ANN approximates uncertainty of
the model prediction with reasonable accuracy, and this is an
indicator that the presented method can be a valuable tool
for assessing uncertainty of various predictive process mod-
els. The proposed method can be used to emulate the results
of various MC based uncertainty analysis methods such as
Markov chain Monte Carlo sampling, Latin Hypercube sam-
pling and others. Furthermore, this method can be applied in
the context of other sources of uncertainty – input, structure,
or combined.

Further studies aim at testing other machine learning tech-
niques (possibly including instance-based learning), and ap-
plying the presented methodology to other hydrological (pro-
cess) models in various case studies.
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