Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 11, issue 1
Hydrol. Earth Syst. Sci., 11, 44–60, 2007
https://doi.org/10.5194/hess-11-44-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: A view from the watershed revisited

Hydrol. Earth Syst. Sci., 11, 44–60, 2007
https://doi.org/10.5194/hess-11-44-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  17 Jan 2007

17 Jan 2007

The long-term water balance (1972–2004) of upland forestry and grassland at Plynlimon, mid-Wales

V. Marc and M. Robinson V. Marc and M. Robinson

Abstract. This paper reviews research into the hydrological impacts of UK upland forestry and updates the water balance of the Plynlimon research catchments for the period 1972–2004. Comparison of this network of densely instrumented coniferous forest and grassland catchments builds upon previously reported differences in annual evaporation of the two land uses and, most crucially, provides evidence of systematic, age-related, variations in forest evaporation losses over a managed plantation forest cycle. In comparison with the grassland catchment, the additional water use of the 70% forested catchment fell from 250 to 150 mm yr−1 because of increasing forest age; this is equivalent to a decline from 370 mm to 210 mm extra evaporation from a complete forest cover. At present, with up to half of the forest area felled or only recently replanted, the difference in evaporation between the forest and grass catchments is negligible. Knowledge of the period of maximum tree water use may be critically important for the future management of multi-use forests. This is also being investigated by micro-meteorological measurements at the scale of the forest stand using eddy covariance, in conjunction with the long-term catchment monitoring.

Publications Copernicus
Download
Citation