Articles | Volume 10, issue 2
04 Apr 2006
04 Apr 2006

Distance in spatial interpolation of daily rain gauge data

B. Ahrens

Abstract. Spatial interpolation of rain gauge data is important in forcing of hydrological simulations or evaluation of weather predictions, for example. This paper investigates the application of statistical distance, like one minus common variance of observation time series, between data sites instead of geographical distance in interpolation. Here, as a typical representative of interpolation methods the inverse distance weighting interpolation is applied and the test data is daily precipitation observed in Austria. Choosing statistical distance instead of geographical distance in interpolation of available coarse network observations to sites of a denser network, which is not reporting for the interpolation date, yields more robust interpolation results. The most distinct performance enhancement is in or close to mountainous terrain. Therefore, application of statistical distance in the inverse distance weighting interpolation or in similar methods can parsimoniously densify the currently available observation network. Additionally, the success further motivates search for conceptual rain-orography interaction models as components of spatial rain interpolation algorithms in mountainous terrain.