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Abstract. Spatial interpolation of rain gauge data is impor-
tant in forcing of hydrological simulations or evaluation of
weather predictions, for example. This paper investigates
the application of statistical distance, like one minus com-
mon variance of observation time series, between data sites
instead of geographical distance in interpolation. Here, as
a typical representative of interpolation methods the inverse
distance weighting interpolation is applied and the test data
is daily precipitation observed in Austria. Choosing statis-
tical distance instead of geographical distance in interpola-
tion of available coarse network observations to sites of a
denser network, which is not reporting for the interpolation
date, yields more robust interpolation results. The most dis-
tinct performance enhancement is in or close to mountainous
terrain. Therefore, application of statistical distance in the
inverse distance weighting interpolation or in similar meth-
ods can parsimoniously densify the currently available obser-
vation network. Additionally, the success further motivates
search for conceptual rain–orography interaction models as
components of spatial rain interpolation algorithms in moun-
tainous terrain.

1 Introduction

Precipitation maps with daily or better resolution are neces-
sary for investigation of the climatology of extreme events
(e.g. Skoda et al., 2003; Palecki et al., 2005), as input in
hydrological modeling (e.g.Singh and Frevert, 2002a,b), or
in evaluation of numerical weather prediction models (e.g.
Beck et al., 2004), for example. Depending on application
the maps have to be available close to real–time (e.g. in de-
tection of flood generating processes) or it is possible to wait
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some time and gather as much rain observation data as pos-
sible (e.g. in climatology).

The back-bone of these maps are rain gauge data since
the reliability of remote sensing data (e.g., by weather radar
or satellite) is not high enough (e.g.,Young et al., 1999;
Ciach et al., 2000; Adler et al., 2001). A challenge in
mapping is the temporal variation of spatial coverage of
available rain gauges. For example, the monthly monitor-
ing product of the Global Precipitation Climatology Centre
(http://gpcc.dwd.de) is based on about 6000 stations avail-
able in near real-time. A second product, the so-called full
product, is based on 40 000 stations in the late 1980s but
based on only about 20 000 stations in the year 2000. An-
other example of time-delay in data availability is a daily
precipitation atlas byRubel(1996) with gridspacing of a few
tens of kilometers for the Baltic sea and its drainage basin
(area: 1.7e6 km2). Rubel(1996) is based on about 400 sta-
tions and its update byRubel and Hantel(2001) is based on
a 10-times denser station network.Liebmann and Allured
(2005) gives a very recent example of varying observation
network density in precipitation mapping.

The essence of precipitation mapping is the interpolation
of point data (the rain gauge orifices of∼1000 cm2 are small
compared to the mapping scale, thus the observation sites are
considered to be points in good approximation) and spatial
averaging or smoothing of the interpolated point data. This
leads to precipitation fields with spatial gridspacing and cell
support of, for example, a few tens of kilometers. Mapping
of rain gauge data is a point-to-area interpolation of the avail-
able information.

Auer et al.(2005) developed a homogenized data set of
long series of monthly precipitation at 192 station sites in
the European Alps and their surroundings. Relative series
homogenization relies on significant common variability be-
tween neighbored site series assumed to be expressible as
common varianceR2 with R the linear correlation coeffi-
cient. Auer et al.(2005) chose a threshold ofR2

=0.5. But,
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Fig. 1. Height distributions of the Austrian orography, of all consid-
ered rain gauges, and of a subset of 50 gauges on an approximately
regular spatial grid.

Scheifinger et al.(2003) estimated that on average a net-
work density of about 1/100 km is necessary for establishing
R2

≥0.5 in the greater Alpine region, and the average site–
to–site distance increases backwards in time from 61 km in
the second half of the 20th century to 74 km in the late 19th
century and up to about 200 km in the early 19th century.
Thus relative homogenization is not possible in the early 19th
century. Relative series homogenization is a point-to-point
transformation or interpolation of information.

Another, closely related point-to-point interpolation chal-
lenge is estimation of missing data, i.e. filling in the precip-
itation time series of a temporarily not reporting station by
using information of neighboring stations. Methods for fill-
ing in are, for example, inverse distance weighting (IDW)
interpolation, ordinary Kriging, or multiple linear regression
using the least absolute deviations criterium (Eischeid et al.,
2000). These authors concluded that in interpolation of daily
precipitation data “the preselection of surrounding stations,
based on their relationship with the station to be estimated,
is an integral first step” of all interpolation methods, but with
least absolute regression outperforming the other methods in
their application.

The relationship between stations is considered differently
in the mentioned interpolation methods. The standard IDW
method expresses relationship in terms of geographical dis-
tance; the Kriging variants apply variogram models which
are in typical implementations monotonic functions of geo-
graphical distance; and multiple regression applies some sta-
tistical distance between the observation time series. There-
fore, Tobler’s first law of geography (Tobler, 1970) that all
things are related, but nearby things are more related than
distant things, is respected in all methods, but with different
interpretations of distance.

This paper discusses application of different statistical dis-
tances instead of geographical distance in interpolation of ob-
servations of a coarse station network to station sites that are
not reporting at the interpolation date. Therefore, it discusses
the filling in challenge. But, here the challenge is filling in
hundreds of observations of a fine-grid station network from
an available coarse-grid network with varying network den-
sity. The data sets, here from Austria, will be introduced in
the next section. The goal is to test a parsimonious method
for effective network densification that has the potential to
improve rainfall mapping. Section3 explains how to use
some statistical distance measure instead of geographical dis-
tance in the often applied, easily to comprehend and imple-
ment IDW method. Section3 explains why IDW is an ideal
vehicle for illustrating the advantages and disadvantages of
statistical distance and interpolation results will be shown in
Sect.4. Finally, some conclusions and a brief outlook are
given.

2 Data

For evaluation of precipitation interpolation methods assum-
ing different mean observing station distances a dense refer-
ence network of precipitation stations is necessary. In this
investigation a data set of about 900 stations with long daily
time series (in the period 1971 to 2002) has been available
for Austria (total area is 84 000 km2) as provided by the Hy-
drographisches Zentralbüro, Vienna (delivery date: February
2005). Austria is a country with 62% covered by the Aus-
trian Alps and only 32% below 500 m, cf. Fig.1, and thus
interpolation is done in complex mountainous terrain.

The chosen year for the interpolation experiments is 1999.
All stations with missing data in 1999 and not at least twenty
years of data are erased from the data set and the investi-
gations are done with the remaining 710 station time series.
This set of stations is named ALL in the following.

In this set of ALL stations the mean next station inter–
distance is 6.7 km, but the stations are not regularly dis-
tributed within the domain of investigation. They are clus-
tered around Vienna in the north-east of the domain and
in the main Alpine valley floors (Fig.2). The irregularity
is also illustrated in Fig.1 which compares the orographic
height distribution with distributions of station heights. The
lower altitudes are relatively better represented by stations
than higher elevations.

In the interpolation experiments this paper applies subsets
of ALL stations with 25, 50, and 150 members as observing
stations and subsets of the remaining stations with 300 mem-
bers as evaluating stations, which are considered in the in-
terpolation experiments as temporarily not reporting station
but with a long time series of data. The subsets are drawn
in a fashion that approximately maximizes the next station
geographic inter-distance. One station of the minimum dis-
tance pair is erased until the wished number of observing and
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Fig. 2. Rain gauges locations of set ALL (bullets) considered in the present investigation and measured values (bullet colors) for 19 August
1999. The orography is indicated by grey shading (light-grey: elevations above 800 m m.s.l., and dark-grey: elevations above 1500 m m.s.l.).
The main Austrian watersheds are indicated by black isolines.

subsequently of evaluating stations is left. Table1 gives min-
imum, mean, and maximum geographic distance and next
neighbor common varianceR2. The meanR2 increases with
number of stations as expected and consequently the mean
interpolation performance should increase. It is noteworthy
that for all station sets there are sites which are statistically
far from all the others, i.e.R2<0.5. The number of 150 sta-
tions is chosen since this is about the number of stations that
are operational at the Austrian national weather service. This
is a globally comparably dense operational network. But, the
data of the weather service is not used here since different
data sets with different measurement device types and qual-
ity control shall be avoided here for the sake of simplicity.

The chosen regularizing sub-sampling leads to decluster-
ing of the considered station sets, but as Fig.1 illustrates
the elevation distribution of the stations is only slightly im-
proved. It should be kept in mind that typical station net-
works are clustered and thus the effective number of stations
in mapping is smaller than the nominal number of stations.
Random sub-sampling experiments lead to decreasing inter-
polation performance, but this will not be discussed further.

In climatological mapping of precipitation in mountainous
terrain a precipitation-elevation relationship is often success-
fully considered (cf.Sevruk, 1997). This elevation depen-
dence is illustrated in Fig.3 for yearly data. It is also illus-
trated that such a dependence is less obvious at shorter time
scales because of the large scatter of the daily precipitation

Table 1. Statistics of the geographic distances of the considered
station sets and statistics of the common varianceR2 of daily pre-
cipitation series.

set distance [km] R2 [%]
min mean max min mean max

ALL/710 1 7 21 40 73 97
25 43 54 69 28 41 53
50 29 36 53 29 50 69
150 16 20 37 41 61 77

values. This will be discussed in some more detail in the
following section.

3 Interpolation method

For illustrational purposes the Inverse Distance Weighting in-
terpolation (IDW) method is applied. IDW assigns weights
to neighboring observed values based on distance to the inter-
polation location and the interpolated value is the weighted
average of the observations. IDW is applied in many precip-
itation mapping methods (e.g.,Rudolf and Rubel, 2005; Frei
and Scḧar, 1998) often enhanced with add-ons like declus-
tering and directional grouping of stations, or empirical
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Fig. 3. Height dependence of precipitation observed by all stations
for the year 1999 and the day 19 August 1999.

adjustments in respect to orography (Daly et al., 1994). The
IDW method is a simple, but efficient interpolation method.
It is shown that statistical interpolation methods like mul-
tiple linear regression, optimal interpolation or Kriging can
perform better, but only if data density is sufficient (Eischeid
et al., 2000). Successful applications of Kriging and optimal
interpolation are presented inRubel and Hantel(2001) and
Durand et al.(1993), respectively.

Here, IDW is applied as an ideal vehicle to illustrate the
effects of distance interpretation in interpolation. Standard
IDW applies a geographical distance measure and this will
be replaced with some statistical distance measure between
observed time series at station sites. This is the main idea of
the above mentioned statistical methods and will further be
discussed below after the IDW has been introduced formally.

In standard IDW the interpolated value is estimated by a
weighted mean of the observations and the weights are pro-
portional to a negative power of geographical distancesdα

between the point of interpolation and the considered obser-
vation points. Typically, not all observationsPα are consid-
ered in estimation of the interpolating valueP0 but only n

neighboring with

P0 =

∑n
α=1 Pαwα∑n

α=1 wα

(1)

and the weights

wα = 1/dλ
α (2)

The powerλ of distance has to be chosen appropriately de-
pending on the interpolated variable. Spatially smoother
variables show larger spatial dependence and thus like
smaller values ofλ than spatially rougher fields. Generally,
it is assumed that the separation of close-by observations in-
creases faster than linear with station distance and often a
powerλ of two is assumed.

If only the next neighbor is considered (i.e.n=1) IDW col-
lapses to the next neighbor or Thiessen method. AsBlöschl
and Grayson(2001) elaborated, IDW generates spurious
artefacts in case of highly variable quantities and irregularly
spaced data sites. This is typical for observed precipitation
data. Thus, in practical implementations the IDW is com-
plemented by empirical methods like directional grouping
of stations and exclusion of stations if shadowed by closer
stations (Shepard, 1984). These artefacts are not important
in our experiments because of the applied regularizing sub-
sampling of the available stations. IDW interpolation apply-
ing geographical distance is namedd-IDW in the following.

Besides geographical distance additional empirical rela-
tionships can be implemented. One example is regression
with orography (Daly et al., 1994). Adopting this regres-
sion is crucial in development of climatological precipitation
maps but of less importance in daily maps as Fig.3 indi-
cates. But this example illustrates that besides horizontal dis-
tance also vertical distance, slope of orography, observation
positioning at the wind- or leeward slope, distance from the
range crests etc. should be considered (Smith, 1979). Unfor-
tunately, implementations of adequate empirical relations of
that type are difficult (Smith, 2003; Barros and Lettenmaier,
1994). A simple station separation measure is wanted which
takes the complexity of rain-terrain interaction into account.

Here, it is assumed that long time series of precipita-
tion are available at the observation sites and the interpo-
lation sites. Thus, it is easy to replace geographical dis-
tance by some type of statistical distance between data se-
ries. A proper statistical station distance implicitly considers
rain-terrain interaction through experience. One useful class
of statistical measures obviously are cross-correlation type
measures like 1−R2. The drawback of this measure of prox-
imity is that differences in the mean between neighboring
series are not considered. Therefore, the semi-mean squared
difference (i.e., basically the Euclidean distance)

γ0α =
1

2T

T∑
t=1

(Pt0 − Ptα)2 (3)

between the time series of lengthT is applied as an alterna-
tive statistical measure of separation. Only dayst with pre-
cipitation at both observation sites 0 andα are considered.
This measure quantifies random and systematic differences
between the time series.

If, instead ofd, theγ is applied in IDW the proximity of
stations is replaced with the proximity of data series. The
resulting interpolation method is namedγ -IDW in the fol-
lowing.

Application ofd- or γ -IDW yields different interpolation
values since geographical close-by stations can observe rela-
tively distant precipitation time series and vice versa. This is
shown in Fig.4. For single evaluating stations the next geo-
graphical neighbor might not be the next neighbor measured
by the γ -distance (exemplified by two station’sγ -vectors
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Fig. 4. Statistical distanceγ for all evaluation–observation pairs.
Here, 50 observing stations are assumed. Theγ s for two stations
(cf. the stations marked by colored arrows in Fig.7) are highlighted
by colored symbols.

marked red and blue in the figure). Therefore, application
of theγ s instead of theds changes the selection of then next
neighbors and their relative importance in the interpolated
value.

The factor 1/2 in the definition ofγ is not important
here, but chosen to illuminate that the scattergram shown
in Fig. 4 would be the empirical semi-variogram in case of
Kriging with a climatological semi-variogram like inRubel
and Hantel(2001). In case of a stationary field the Kriging
method applying a climatological semi-variogram is equiva-
lent to Gandin’s optimal interpolation where distance is mea-
sured in terms of time-series correlation, and both are very
similar to the classical multiple linear regression (Creutin and
Obled, 1982). In multiple linear regression the correlations
between interpolation and observation sites are known. Krig-
ing and optimal interpolation are applied in mapping where
these correlations are generally unknown and have to be re-
placed by variogram or correlation models, respectively.

The advantage of these methods over statistical distance
IDW is that they account for relationships between observ-
ing stations. Therefore, statistical IDW can be considered
as a simplified prototype of these more elaborated interpo-
lation methods. The IDW is an easy framework for inves-
tigating the impact of replacing geographical distance with
some statistical distance between observation and interpola-
tion sites. Algorithmically the change in distance interpre-
tation is easily done by replacing the geographical distance
with a statistical distance matrix. This is also an advantage if
operational application is considered since IDW variants are
often applied in mapping schemes and since, for example, in
multiple linear regression the regression coefficients have to

Fig. 5. Relative representativeness in geographical (black bullets)
andγ -statistical (red circles) of the observing stations of set 50. The
solid black and dashed red lines are local polynomial regression fits
to the bullets and circles, respectively.

be estimated and algorithmically dealt with for each interpo-
lation site and network topography separately, and this is a
formidable task.

Figure5 indicates the spatial and statistical representative-
ness of the observing stations of set 50. Shown are the aver-
aged inverse distances to the neighboring 24 evaluating sta-
tion sites (i.e. about to neighbored evaluating sites to which
the observing stations are applied to in interpolation with
n=4). The geographical representativeness of the stations
scatter but is not systematically dependent on station eleva-
tion. This confirms that the regularizing sub-setting has been
successful. The statistical representativeness decreases with
station elevation on average. Since this is not respected by
geographical distance weighting and since mean observed
precipitation increases with height it is expected that precip-
itation will be tendencially overestimated in the Alpine area
by interpolation withd-IDW. Additionally, n might be cho-
sen larger or the exponentsλ chosen smaller in the eastern
lowlands of Austria than in the Alpine area in an optimized
d-IDW interpolation setup to compensate the varying data
representativeness (not tested here).

As mentioned above theγ s also measure systematic dif-
ferences in time series which may be due to elevation de-
pendence of precipitation in orography, mountain shadowing
effects, or horizontal trends in the precipitation field, for ex-
ample. These systematic differences are not measured by the
centered semi-mean squared difference

γ ′

0α =
1

2T

T∑
t=1

((Pt0 − m0) − (Ptα − mα))2 (4)

with m the time series means.
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Fig. 6. Relative importance of systematic differences between pairs
of precipitation time series over geographical distance between the
series sites. The black dots show the relative importance for station
pairs with a vertical elevation difference of less than 50 m (only ev-
ery 5th dot is drawn). The black circles show mean relative impor-
tances for geographical distance classes. The same is shown by the
other colored symbols but for different vertical elevation difference
classes.

The effects of systematic differences on statistical dis-
tances are shown in Fig.6. The relative effect(γ ′

−γ )/γ

over geographical distance is given for four classes of station
elevation differences. For geographically nearby stations the
importance of systematic differences is increasing with sta-
tion elevation difference. On average the effect of systematic
difference between nearby stations with almost no vertical
elevation difference is below 1%. This effect is about 7 %
for stations with about 1000 m vertical distance. This is con-
sistent withHaiden and Stadlbacher(2002). They found for
the same data an elevation dependence of yearly precipita-
tion amounts up to 20% per 1000 m height difference if they
restricted their evaluation to station pairs with horizontal dis-
tances smaller than ten kilometers.

With increasing horizontal distance the height difference
gets less important. Ford≤100 km trends due to shadow-
ing effects in complex terrain might be important and the
remaining height correlation shown in Fig.6 might be due
to an increasing shadowing probability with larger station
height differences. For even larger horizontal distances a pro-
nounced east–west gradient in Austrian precipitation sums
(cf. Fig. 8) might explain the increasing differences between
γ andγ ′. The vertical difference dependence is probably ar-
tificial since the relative frequency of orographic heights dif-
fers substantially between eastern and western Austria. Here,
the possible reasons of systematic effects are not further dis-
cussed, but the existence of systematic effects motivates the
usage ofγ instead ofγ ′ or R2 as the statistical distance mea-

sure. In either interpolation method these trends have to be
considered adequately.

The γ -IDW can be applied only at interpolation sites
with long time series of precipitation observations. At non-
observation sites a mixed method could be thought of. Then

next neighbors are determined by geographical distance. For
the neighbors long precipitation time series are available and
thus theird andγ inter-distances can be determined. With
this information a simple approximation for statistical dis-
tances of the interpolation site to the next neighbors can be
derived. Geometrical selection combined with approximated
statistical distances and thus approximated statistical weights
generates an interpolation method that is slightly better than
d-IDW but shall not be further discussed here. The perfor-
mance gain is small indicating that orogenic modifications
on statistical distance are non-homogeneous and anisotropic
in space.

4 Results

As already noted the interpolation experiments are done with
the observing station data sets of size 25, 50, and 150 for
the year 1999. Always 300 evaluating station sites are the
considered interpolation points and thus evaluating data is
available. Figure7 compares the results ofd- andγ -IDW in-
terpolation. In this example the number of observing stations
is 50 and next-neighbor interpolation, i.e.n=1, is applied.
It is shown that often the next neighbors and thus the inter-
polation values differ between the two approaches. In next-
neighborγ -IDW interpolation even two stations (Mitterfeld-
alm (1665 m m.s.l.) and Filzmoos (1060 m m.s.l.) circled in
Fig. 7) are not considered in interpolation. The spatial rep-
resentativeness of these stations is relatively small and thus
the observations at these stations are statistically useless for
next-neighbor interpolation.

The interpolation results are compared to the evaluat-
ing observations with simple statistics like relative bias
B=(mean(I )−mean(O))/mean(O) with I a set of interpo-
lated values andO the corresponding set of evaluating obser-
vations at the interpolation sites, linear correlationR(I, O),
the ratio of standard deviationsσ(I)/σ (O), and efficiency
E=1−mean((I−O)2)/σ 2(O)=1−MSE(I,O)/σ 2(O).
The spatial average of time series biases is denoted byBt.

and the temporal average of biases between daily precip-
itation fields is denotedB.s . The dot indicates the finally
averaged dimension. The same notation is applied to the av-
eraged correlations, standard deviations and efficiencies. In
case of perfect interpolation the values of the bias statistics
are identical zero and the other statistics’ values are one.

Table2 shows mean results of the evaluation. As expected
the correlation of interpolated values with evaluating data in-
creases with the number of observing stations. Improvement
of bias is not that obvious. Changes in the exponentλ have
a smaller impact, but are not unimportant. The evaluation
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Fig. 7. IDW interpolation of data measured at 50 observing stations for 19 August 1999. The color of the bullets at the station sites (marked
with +) show the observed values. These are a subset of the observations shown in Fig.2. The squares indicate the interpolation points
with the outline color giving the interpolation results by standard next–neighbor geographical IDW and the filling color giving next–neighbor
γ -IDW results. The arrows point to the interpolation stations highlighted in Fig.4. The circles mark observing stations not considered in
next-neighborγ -interpolation.

indicates that ind-IDW an exponent smaller than two per-
forms best in the yearly average. More important is the num-
ber n of considered observation neighbors. In case of 50
observing stations four-neighbor interpolation is better than
next-neighbor interpolation but there is no relevant improve-
ment in taking eight neighbors and even slight decrease in
interpolation performance if sixteen neighbors are taken. A
similar number of neighbors are optimal in case of 25 or 150
observing stations.

Theγ -IDW interpolation is better in correlation and effi-
ciency but seems to be worse in bias. Ind-interpolation there
is a more pronounced spatial compensation of errors. Under-
estimation, for example close to the southern Austrian border
(cf. Fig.8), is compensated by a tendency for overestimation
in central Alpine areas by geographical interpolation. This is
due to overestimation of representativeness of high-elevation
observations (cf. Fig.5). The tendency for underestimation
in γ -interpolation can be avoided if the statistical distances
are estimated after logarithmic transformation of the time se-
ries (cf. experiment ln in Table2). This effectively reduces
the positive skewness of the intensity distribution of daily
precipitation. The skewness of the precipitation distribution
is an important problem common to all interpolation meth-
ods, but shall not be discussed further in the present context.

Figure8 shows the relative biases of the interpolating time
series with next-neighbord- or γ -distance interpolation. The

Table 2. Mean evaluation results of interpolation experiments. The
table gives the spatial mean of relative time series biases Bt., the
temporal mean of spatial biases is B.s , and the related correlation
coefficientsRt. andR.s and efficiencies. All values are given in
percent and thus the values ofBs would be 0 and all other values
would be 100 in case of perfect interpolation.

Exp. Bt. B.s Rt. R.s Et. E.s

set,λ,n,– d/γ d/γ d / γ d / γ d/γ d/γ

25,2,4,– 1/−5 0/−7 84/85 56/60 67/71 22/33
50,2,4,– 4/−3 1/−7 87/88 62/65 73/76 32/42
150,2,4,– 1/−2 −1/−5 91/91 70/72 80/82 45/52

50,1,4,– 4/−2 1/−8 88/88 62/64 73/76 35/40
50,3,4,– 4/−3 2/−7 87/88 61/65 71/76 26/41

50,2,1,– 4/−2 4/−6 83/84 57/60 59/65 1/19
50,2,8,– 4/−3 1/−8 88/88 63/65 74/76 35/42
50,2,16,– 5/−5 1/−11 88/87 62/65 73/73 36/39

50,2,4,ln −/2 −/0 −/88 −/65 −/75 −/40
50,2,4,γ ′

−/−3 −/−8 −/88 −/65 −/76 −/42
50,2,4,Wi 9/−5 0/−10 87/88 65/70 65/74 40/48
50,2,4,Su 2/−1 2/−6 87/88 60/61 73/76 25/36
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Fig. 8. As Fig. 7 but showing precipitation sums for the year 1999 at 50 observation sites and relative biases at the evaluation sites. The
vertical bars indicate relative biases for the 1999 interpolation experiments. The inlet shows the height of a bar with 100% positive bias.
Black gives biases with geographical and red with statistical distance next-neighbor interpolation.

spatial averages of these biases are given in Table2 by exper-
iment 50/2/1/– to 4 and−2, respectively. Obviously, relative
biases ind-IDW interpolation are larger in mountainous ter-
rain than in the lowlands (the same is valid for correlation
and efficiency errors, not shown). In mountainous terrain
the scatter in relative biases is smaller withγ - instead ofd-
interpolation and thus performance ofγ -interpolation is bet-
ter. This can also be seen in Fig.9. This figure shows interpo-
lated precipitation sums in comparison with observed sums
of 1999 in a west-east transection with areal support of 350 to
370 km northing. Results with next- and four-neighbors in-
terpolation are compared. Again the tendencies of over– and
underestimation of geographical or statistical distance inter-
polation are visible. The tendency of smaller values of sta-
tistical interpolation yields smaller standard deviations. Sub-
jectively interpolation withn=4 leads to better results, but
obviously also to smoother, variability vastly underestimat-
ing fields.

The smaller scatter in bias, correlation and efficiency by
γ -IDW is also shown by the histograms in Fig.10. These
histograms give statistics values applyingn=4 interpolation.
The statistical distance interpolation is more robust than ge-
ographical distance interpolation. Extreme overestimates of
daily means are avoided. Correlations are shifted to higher
values and the number of days with spatialR2

≤0.5 and small
or even useless (E≤0) efficiencies are significantly reduced.

Obviously, time series performance is better than spatial

performance. This is due to the scales of the data. The tem-
poral support of the data is daily. The spatial support of the
observations (∼1000 cm2) is very small in comparison (Or-
lanski, 1975). This explains the better performance of inter-
polation in terms of time series than of spatial field compar-
isons. As a consequence the spatial results are more sensitive
to the chosen interpolation method.

Most interpolation methods are smoothing operations
which reduce field variability. This is visualized in theTay-
lor (2001)-diagram shown in Fig.11. For example, next-
neighbord-interpolation overestimates temporal and spatial
variability in comparison with the evaluating observations.
But, with n=2, 4 etc. variability is more and more underes-
timated. This effect is more important for spatial than tem-
poral variability because of the relatively smaller spatial in-
terpolation support scale. The traces of crosses in the di-
agram are convex showing that there is an optimum number
of neighbors to be considered in interpolation. If in the envis-
aged application the field correlation is more important than
field variability then a number of four neighbors is well cho-
sen in case of 50 observing stations. The optimum depends
on the interpolation setup: number of stations, power of dis-
tance, spatial and temporal variability of the natural precip-
itation field etc. The impact on smoothing of the powerλ

of the distance and de-skewing inγ -IDW are also shown in
Fig. 11. With increasingλ the effective number of obser-
vations decrease and variability of the interpolating values

Hydrol. Earth Syst. Sci., 10, 197–208, 2006 www.hydrol-earth-syst-sci.net/10/197/2006/



B. Ahrens: Distance in spatial interpolation of daily rain gauge data 205

100 200 300 400 500 600 700

50
0

10
00

20
00

easting  [km]

pr
ec

ip
  [

m
m

/y
] µ   :

σ   :
1107,
364,

1172,
342,

1083
334

100 200 300 400 500 600 700

50
0

10
00

20
00

easting  [km]

pr
ec

ip
  [

m
m

/y
] µ   :

σ   :
1107,
364,

1180,
308,

1091
280

Fig. 9. Year 1999 sums of observed and interpolated precipitation at sites in a west-east transection with areal support between 350 and
370 km northing. Grey symbols show the observed values, black symbols the interpolated values with geographical distance interpolation
and red symbols with statistical distance interpolation respectively. The upper panel appliesn=1, i.e. next-neighbor, and the lower panel
appliesn=4 neighbors in interpolation. The transection meansµ and standard deviationsσ are given too.

increase. De-skewing inγ estimation slightly improves vari-
ability, correlation and thus (as is proven inTaylor, 2001)
centered root-mean-square error RMSE′.

As discussed earlier there are systematic differences be-
tween station time series due to vertical or horizontal trends.
In the interpolation experiments on a daily data basis these
systematic effects are generally small in comparison to in-
terpolation errors as is shown by application ofγ ′ instead of
γ distances (cf. experimentγ ′ in Table 2). This says that
on average the relative importance of vertical dependence of
precipitation rates is small in comparison with interpolation
errors in our setup. Of course, in some areas or applications
the vertical dependence is important. Additionally, these sys-
tematic effects get more important with increasing interpola-
tion performance, for example because of increasing tempo-
ral support of interpolation time slices (i.e. monthly or yearly
precipitation fields instead of daily fields).

Seasonal stratification of precipitation events inγ -
estimation and -interpolation yields the expected results. Ta-
ble 2 gives interpolation results if only Summer or Win-
ter six-month data are considered (experiments Su and Wi).
Spatial field correlations and efficiencies are better in Winter
than in Summer. In Austria the Winter precipitation is less
intensive and less heterogeneous in the mean than Summer

precipitation. The more stochastic character of convective
Summer rain reduces the spatial representativeness of data.
Nonetheless, the temporal correlation differences are small.

Interestingly, the temporal efficiencies are even better in
Summer than in Winter. The MSEs of the interpolated
time series are smaller in Winter (d: 7.6 (mm/d)2 and γ :
5.9 (mm/d)2) than in Summer (d: 17.9 (mm/d)2 and γ :
15.9 (mm/d)2). But, if the MSEs are normalized with ob-
served time series mean variance (22 and 66 (mm/d)2 in
Winter and Summer, respectively) then Summer interpola-
tion performs better than Winter interpolation in terms of
time series comparison. In either case, Summer or Winter,
γ -IDW performs better thand-IDW with performance gain
more pronounced in Winter because of higher stationarity of
spatial patterns caused by frontal interaction with orography.

Stratification of precipitation days with a mean wind di-
rection classification for the lower atmospheric levels in the
Eastern Alps (Steinacker, 1990) has been tried also. This
even slightly reduces overall performance inγ interpola-
tion. The small scaleγ -distances are not highly dependent on
large scale wind direction. Additionally, the size of specific
wind direction classes is small even in the available thirty
year data sets and thus estimation of stratifiedγ s is not ro-
bust.
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Fig. 10. Histograms of spatially (upper row) and temporally (lower row) averaged statistics. The solid red histograms show the evaluation
results forγ - and the hatched black histograms for thed-distance interpolation with set 50,n=4, andγ=2.
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Fig. 11.Taylor (2001)-diagram showing evaluation results with ob-
servation set 50 but different interpolation setups. Black “+” and
red “x” show the dependency onn with n=1, 2, 4, 8, 16 for d- and
γ -interpolation, respectively, andγ=2. The green “x” show results
with γ -interpolation andn=4 andγ=1, 3, 4. The blue “x” show
results for experimentln. The group of symbols indicating better
correlations and centered RMSE′s are from time series comparisons
and the other group indicate spatial field comparisons.

5 Conclusions

Spatial interpolation of daily rain gauge data with Inverse
Distance Weighting (IDW) at locations with available precip-
itation time series has been investigated. It has been shown
that the application of a statistical distance measure between
neighbored precipitation time series instead of geographical
distances between station locations slightly improves aver-
aged interpolation performance. The main advantage is that
statistical distance IDW is more robust especially in or close
to mountainous terrain where complex rain–orography inter-
action is important that is implicitly considered in the sta-
tistical distance. This performance gain in mountainous ter-
rain illustrates the potential of simple but necessarily spa-
tially highly resolving models of rain-orography interaction.

Geostatistical interpolation methods consider statistical re-
lationship between stations through variogram or correlation
models. Often, geostatistical models are implemented lo-
cally, i.e. they considern next neighbors in interpolation.
Thesen neighbors could easily be selected by explicit use
of statistical distance. More sophisticated approaches could
be thought of. For example, Kriging could be applied after
mapping station locations with statistical distances instead of
geographical distances by metric multidimensional scaling
(Sammon, 1969). Thus, standard Kriging could be applied
in statistical space, but this is a topic for further research.

Implementation of IDW interpolation with statistical dis-
tance is easily done if the necessary time series are available
at the interpolation sites. An example of application might be
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daily precipitation mapping in Austria. Operationally about
150 rain gauges with daily or better resolution are available
to the Austrian national weather service. FollowingWeil-
guni(2003) about 950 additional rain gauges with daily mea-
surements are operated in Austria by the hydrological ser-
vice, hydropower agencies etc. These additional stations are
not available in near real-time, but their statistical informa-
tion could be applied easily within the statistical IDW. This
would be a parsimonious and robust procedure for using all
available rain gauge data in densification of the point data
network that could be appropriately upscaled in precipitation
mapping.
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