
Runoff sensitivity to spatial rainfall variability: A hydrological
modeling study with dense rain gauge observations
Clara Hohmann1,2, Gottfried Kirchengast1,2,3, Sungmin O2,3,4, Wolfgang Rieger5, and Ulrich Foelsche3,1,2

1Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
2FWF-DK Climate Change, University of Graz, Graz, Austria
3Institute for Geophysics, Astrophysics, and Meteorology/ Institute of Physics, University of Graz, Graz, Austria
4now at: Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
5Bavarian Environment Agency, Germany

Correspondence: Clara Hohmann (clara.hohmann@uni-graz.at)

Abstract. Precipitation is a key input to hydrological models. While rain gauges provide the most direct precipitation measure-

ments, their accuracy in capturing rain patterns highly depends on the spatial variability of rainfall events and the gauge network

density. In this study, we employ a high-resolution meteorological station network (mean station distance of 1.4 km), the We-

generNet in southeastern Austria, to investigate the impact of station density and interpolation schemes on runoff simulations.

We first simulate runoff during heavy precipitation (three short-duration and three long-duration events) using a physically5

based hydrological model with precipitation input obtained from a full network of 158 stations. The same simulations are then

repeated with precipitation inputs from subnetworks of 5, 8, 16, 32, and 64 stations, using three different interpolation schemes

– Inverse Distance Weighting with a weighting power of 2 and of 3, respectively, and Thiessen polygon interpolation. We find

that the performance of runoff simulations is greatly influenced by the spatial variability of precipitation input, especially for

short-duration rainfall events and in small catchments. For long-duration events, reliable runoff simulations in the study area10

can be obtained with a subnetwork of 16 or more well-distributed gauges (mean station distance of about 6 km). We find a

clear effect of interpolation schemes on runoff modeling as well, but only for low-density gauge networks. The sensitivity to

the precipitation input is smaller for long-duration heavy precipitation events and bigger catchments. As a next step we suggest

to study an ensemble of precipitation datasets in combination with runoff modeling to be able to decompose the effects of

precipitation measurement uncertainties and its spatial variability.15

1 Introduction

Heavy precipitation events can have significant impacts on society and ecosystems by causing severe floods and landslides.

Moreover, they intensify under climate change in many areas (Kharin et al., 2007; Chen et al., 2012; Fischer and Knutti, 2016;

Prein et al., 2016). Hydrological models have served as important tools to assess the impacts of heavy precipitation events

on runoff and hydrological processes. Since precipitation is the most important input in hydrological models (e.g., Bárdossy20

and Das, 2008; Zeng et al., 2018), it is crucial to understand its uncertainty and how the uncertainty in precipitation affects

simulated runoff. Especially for heavy precipitation events, the spatial and temporal heterogeneity of precipitation becomes
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more and more important. Convective storm cells with large volumes of precipitation can easily trigger hazards, but their

limited spatial and temporal extent is associated with huge measurement uncertainties (Mcmillan et al., 2012). Beside the

measurement uncertainties, considerable uncertainty can arise when point-level measurements are spatially interpolated for25

final gridded products (Goodrich et al., 1995; Mcmillan et al., 2012; Huang et al., 2019; O and Foelsche, 2019). Such gridded

datasets are crucial to obtain areal precipitation information within catchment and subcatchment areas, especially for spatially

distributed hydrological models. Areal precipitation data can also be derived from radar and satellite-based observations. But

all measurements come with their own uncertainties and pros and cons (Kidd and Huffman, 2011). On one side, the point

measurements are most reliable for the quantitative amount of precipitation sums. However, they often do not provide reliable30

spatial patterns of heavy precipitation, because of their sparse distribution. On the other side, radar systems show a high

spatial resolution of the precipitation cells, but do not give specific precipitation amounts (e.g., Sun et al., 2000; Tetzlaff and

Uhlenbrook, 2005). Satellites indirectly estimate precipitation and therefore their data are subject to errors and uncertainties

(Tian and Peters-Lidard, 2010; Kirstetter et al., 2012; O et al., 2017; Lasser et al., 2019).

Despite the availability of remote-sensing data, ground-based precipitation measurements are still widely used in hydrolog-35

ical modeling (Lopez et al., 2015; Zeng et al., 2018). Many studies, like those by Lopez et al. (2015), Goovaerts (2000) and

Zeng et al. (2018), also pointed out the advantage of dense and well-distributed precipitation station networks. Since many

years the effect of different precipitation station densities in hydrological models has been analyzed (e.g., Obled et al., 1994;

Dong et al., 2005; Bárdossy and Das, 2008; Meselhe et al., 2009; Xu et al., 2013; Zeng et al., 2018; Huang et al., 2019). Dong

et al. (2005) and Xu et al. (2013) used a statistical approach to identify the appropriate number of precipitation gauges and then40

focused on the influence on the model performance of a lumped model. Both studies found a threshold after which an increase

in station density does no lead to better model performance. Such a threshold can also be seen in many other studies (e.g., Bár-

dossy and Das, 2008; Zeng et al., 2018). Meselhe et al. (2009) used a conceptual and a physically based model to identify the

impact of temporal and spatial sampling of precipitation (highly dense station network) on runoff predictions. The physically

based model was more sensitive to spatial and temporal resolution of rainfall. A threshold with no significant increase of model45

performance can also be seen in this case for both models. Huang et al. (2019) used a lumped and a distributed hydrological

model to study the sensitivity of model performance to spatial rainfall resolution. They found the most important aspect in

the temporal resolution, with better model performance under higher temporal resolution. Many of these studies put the model

performance in focus and used a lumped hydrological model. To keep the model uncertainty low, we used a process-based

model and tested the sensitivity of different precipitation station densities.50

By using station data for hydrological models, also the spatial interpolation schemes come into account. Many different

interpolation options and possibilities are broadly studied (e.g., Zhang and Srinivasan, 2009; Ly et al., 2013; Szcześniak and

Piniewski, 2015). Widely used precipitation interpolation schemes are Arithmetic Mean (Andréassian et al., 2001; Dong et al.,

2005; Huang et al., 2019), Thiessen Polygons (TP) (Kobold and Brilly, 2006; Meselhe et al., 2009; Zeng et al., 2018), Inverse

Distance Weighted (IDW) (Verworn and Haberlandt, 2011; Schwarzak et al., 2015; O and Foelsche, 2019; Breinl et al., 2020),55

and different types of kriging like Ordinary Kriging (St-Hilaire et al., 2003; Verworn and Haberlandt, 2011; Breinl et al.,

2020) or External Drift Kriging (Bárdossy and Das, 2008; Verworn and Haberlandt, 2011; Xu et al., 2013). The differences
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between the interpolation schemes are especially pronounced for extreme values (Szcześniak and Piniewski, 2015). Therefore,

the selection of interpolation schemes can affect hydrological simulations especially under heavy and extreme rainfall events.

Because our study area has a moderate topography with well-distributed stations, we do not expect an added value from60

more complex geostatistical methods like kriging and therefore we decide to focus on the two most widely used interpolation

schemes TP and IDW.

To overcome the uncertainties with the spatial and temporal resolution a highly dense station network of precipitation point

measurements can help. But, how many stations do we need to reliably model hydrological runoff under heavy rainfall events?

And how large is the influence of interpolation scheme on runoff results under different station network densities? The highly65

dense station network WegenerNet (WEGN) in the southeastern Alpine forelands of Styria, Austria allows us to study these

questions related to the Raab catchment. The region of southeastern Styria, Austria is well known for heavy precipitation events

(Schroeer and Kirchengast, 2018; Breinl et al., 2020) (Sect. 2.1). Because of the data availability (Sect. 2.2) it is possible to

analyze the influence of precipitation station densities on runoff in detail. Therefore, we set up the widely physically based

"Water Flow and Balance Simulation Model" WaSiM (Schulla, 1997) (Sect. 3.1) and simulated runoff under several setups70

(Sect. 3.2). We used different station densities/numbers from 5 to 158 stations, as well as different precipitation interpolation

schemes with one TP scheme and two IDW schemes with a weighting power of 2 (IDW2) and of 3 (IDW3). Previous studies

have assessed the impact of the station density and interpolation on precipitation data quality such as mean and extreme

rainfall values (Gervais et al., 2014; Avila et al., 2015; Herrera et al., 2018). We focus on the impact of such precipitation

uncertainty on hydrologic simulations, especially runoff peaks and the combination of station density and interpolation method.75

We analyze three short- and three long-duration heavy precipitation events in summer (May to September) on the catchment

(500-1000 km2) and subcatchment (10 - 50 km2) scale. The results are on the one hand divided in a section of individual

example events with precipitation maps and runoff curves (Sect. 4.1). On the other hand, in ensembles of events where all

catchments, events, and interpolation schemes are combined and the peak flow deviations are analyzed (Sect. 4.2). It is followed

by a detailed and combined discussion of the results (Sect. 5), and ends with conclusions and an outlook on further studies80

(Sect. 6).

2 Study area and data

2.1 Study area

The study area is part of the Raab catchment, a southeastern Alpine foreland river. The river Raab flows from the "Passailer"

Alps in the state of Styria, Austria at a height of around 1150 m a.s.l. to the Danube river in Hungary. The focus area of this85

study ranges from the gauging station Takern II/Raab to Neumarkt/Raab with a total area of around 500 km2 (Fig. 1). The

gauging station Feldbach/Raab is located in between. Beside the main river Raab also the tributaries with subcatchments of

around 10 to 50 km2 are of interest. Therefore, we choose to analyze five subcatchments (Tabel 1, Fig. 1). The subcatchments

are all covered by the WEGN itself. Three subcatchments are on the northern side of the Raab and two are on the southern.

Since we do not have measured runoff data for these subcatchments, we implemented pour points in the model directly before90
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they flow into the Raab river. The Haselbach (12 km2) is taken as a representative small subcatchment and the Grazbach

(54 km2) as a bigger one for our analysis. Both can be seen as typical subcatchments in our study area.

The total study area is moderately hilly with elevations from 230 m to 530 m and located in the southern alpine foreland.

The land use is dominated by agriculture areas and patchy forests. The dominant soil type is sandy loam. The mean annual

precipitation is around 850 mm and the mean annual temperature about 9.5°C. The study area was chosen because of its95

vulnerability to heavy/convective precipitation events (Schroeer and Kirchengast, 2018) and climate change (Hohmann et al.,

2018). The region is well equipped with a highly dense climate network, the WEGN, which was built up by the Wegener Center

for Climate and Global Change, University of Graz, Austria (Kirchengast et al., 2014). The WEGN measures precipitation,

temperature, humidity, and other variables since the beginning of 2007 with 150 stations (about one per 2 km2, 5 min sampling)

in an area of 22 km x 16 km. All data are quality controlled by the WEGN QC system (Kirchengast et al., 2014) and additional100

bias correction is implemented for precipitation data, using the approach by O et al. (2018).

Table 1. Characteristics of the study catchment and representative subcatchments with the total basin area up to the gauging station/pour

point in the river Raab.

(Sub)catchment Area Location to

[km2] river Raab

Neumarkt/Raab (total catchment) 987 -

Neumarkt/Raab (focus area) 488 -

Feldbach/Raab (total catchment) 689 -

Feldbach/Raab (focus area) 190 -

Grazbach 53.9 north

Auersbach 28.9 north

Saazerbach 27.2 south

Haselbach 12.3 south

Kornbach 12.2 north

2.2 Data

For hydrological modeling of the Raab catchment with WaSiM we need meteorological data for precipitation, temperature,

relative humidity, wind speed, global radiation and air pressure aggregated at a 30 minutes time resolution. Table 2 provides

an overview about the maximum available station amount for each parameter, as well as its source. The WEGN with its105

dense station network and 5 minutes time resolution is build up in a rectangular grid, because of the comparability to climate

models. It is in the middle of the focus area around gauging station Feldbach/Raab, but does not cover the total catchment.

Therefore, we also need to include data from the Austrian Weather Service (ZAMG) with 15 minutes time resolution and
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Figure 1. Map of the Raab catchment in southeastern Austria (left), including the full catchment down to runoff gauge Neumarkt/Raab (red

line), the focus area (grey area), the subcatchments (orange line), the WegenerNet region (violet box), the locations of rain gauge stations (dot

symbols) and the runoff gauges (triangle symbols). An enlarged view of the study area (right) indicates also more closely the used station

subnetworks and subcatchments.

the Austrian Hydrographic Service (AHYD) with 1 to 15 minutes time resolution to properly simulate runoff (Table 2). To

run the model only for the focus area, gauging station Takern II/Raab is used as an inflow. Runoff data from gauging station110

Neumarkt/Raab are used for calibration, and Feldbach/Raab for cross checks and further analysis. For precipitation event

identification the Integrated Nowcasting through Comprehensive Analysis (INCA) by Haiden et al. (2011), a multivariable

analysis and nowcasting system developed at the ZAMG, is used.

Beside hydrometeorological station data, we need gridded data sets. The digital elevation model (DEM), river network, and

geological information are provided by the state government offices of the States of Styria, Austria (LStmk) and Burgenland,115

Austria (LBgld). The topographic analysis tool (TANALYS) of WaSiM uses the DEM to calculate other needed grids like

flowtime, subcatchments, slope, river width and depth, etc. Homogeneous soil and land use grids (HYDROBOD) are provide by

Klebinder et al. (2017) with a resolution of 100 m x 100 m for our research area. The HYDROBOD maps were created with the

methods from Krammer et al. (2016). Maps for every single soil layer (0-20 cm, 20-50 cm, 50-100 cm) and parameter like soil

texture (percentage of sand, silt and clay), saturated hydraulic conductivity, Mualem van Genuchten parameters (combinations120

of residual water content and saturation water content), and soil thickness are used.
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Table 2. Catchment attributes and hydrometeorological data used for the hydrological modeling with WaSiM with the following sources:

HYDROBOD - homogeneous soil and land use grids by Klebinder et al. (2017), LStmk/LBgld – state government offices of the States of

Styria/Burgenland, TANALYS – preprocessing tool of the hydrological model WaSiM, WEGN – highly dense station network data version

7.1 (Fuchsberger et al., 2019), ZAMG – data from the Austrian Weather Service, and AHYD – data from the Austrian Hydrographic Service.

Catchment attributes Source Resolution

Land use types HYDROBOD 100 m

Soil information HYDROBOD 100 m

DEM LStmk, LBgld 10 m

River network LStmk, LBgld -

Geological information LStmk, LBgld -

Subcatchments, slope, TANALYS output 100 m

river width & depth, ect

Meteorological data Source Number of Stations

Precipitation WEGN 150

ZAMG 5

AHYD 3

Temperature WEGN 150

ZAMG 5

AHYD 3

Relative humidity WEGN 150

ZAMG 5

AHYD 3

Wind speed WEGN 12

ZAMG 5

Air pressure WEGN 1

ZAMG 5

Global radiation ZAMG 5

Runoff AHYD 3

3 Modeling approach

3.1 Model setup and calibration

We used the hydrological model WaSiM, developed by et al., at the ETH Zurich in Switzerland for climate change studies

in Alpine catchments. WaSiM is a well-established widely used distributed and process-oriented hydrological model. It has125
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been used in similar catchments and for many different purposes like climate change studies (e.g., Bürger et al., 2011; Gädeke

et al., 2014; Hohmann et al., 2018), land use changes (e.g., Alaoui et al., 2014; Yira et al., 2016) up to operational use (e.g.

at BAFU Switzerland). We focused on a process-oriented model to keep the model uncertainty small, compared to lumped

models, which are often used for similar precipitation runoff studies (e.g., Dong et al., 2005; Zeng et al., 2018; Huang et al.,

2019). Furthermore, WaSiM was already successfully applied by Hohmann et al. (2018) in the study area for a climate change130

sensitivity study with a low flow focus.

In this study, we used the WaSiM Version: Richards-10.02.03. All used modules of WaSiM are shown in Fig. 2. For more

information about the modules see Schulla (1997) or the WaSiM user guide by Schulla (2019). The model is set up with a spatial

resolution of 100 m x 100 m and a temporal resolution of 30 min. WaSiM internally interpolates the meteorological station

data to grids. The evapotranspiration is calculated after Penman-Monteith (Monteith, 1965) and the unsaturated zone with the135

Richards approach parameterized on the basis of van Genuchten (1980). For WaSiM the soil is split up in four calculation

layers (0-20 cm, 20-50 cm, 50-100 cm, 1-20 m) with a total depth of 20 m, including the first groundwater layer. With the data

from Klebinder et al. (2017), we end up with 416 soil parameter combinations in the soil table of WaSiM for our study domain.

The final groundwater parameters of the 2D groundwater module were fitted to represent the baseflow quite well during

calibration period. Therefore, the saturated horizontal conductivity is split up in areas around the river with 5 ·10−5 m s−1 and140

surrounding hilly areas with 1 · 10−6 m s−1. The colmation factor is set to 1 · 10−5 and the storage coefficient to 0.2 m3 m−3.

Beside the gridded groundwater parameters, WaSiM is calibrated with four parameters of the soil module, which influence

shape and volume of the simulated runoff hydrograph and no measured or literature data are available (Schulla, 2019): The

storage coefficient of surface runoff kd (shape of surface runoff hydrograph) and interflow ki (shape of interflow hydrograph),

the drainage density for interflow dr and a recession constant of the soil krec in the soil table (both influencing the amount of145

interflow).

The model calibration period was from the 01.05.2009 to 30.09.2009 with a model spin up from 1.11.2007 to 30.04.2009.

We calibrated the model only for the summer months (May to September), because summer months are in focus and the snow

runoff is not of interest in this study for convective rainfall events in south-eastern Styria. The validation period was the summer

of 2010 (01.05.2010 to 30.09.2010). The model performance was assessed with 50 % Nash-Sutcliffe efficiency (NSE) (Nash150

and Sutcliffe, 1970) and 50 % Kling-Gupta efficiency (KGE) (Gupta et al., 2009). The calibration was performed first with the

shuffled complex evolution optimization algorithm developed at the University of Arizona (SCE-UA) (Duan et al., 1994) to get

a first best guess of the model parameters. Second, to also include the physics behind the parameters and especially to include

the distribution of the runoff components, the model was manually recalibrated: checking the NSE and KGE values, visually

comparing the measured runoff with the simulated runoff and visualizing the runoff components for specific events. Because155

of the necessity of such manual recalibration, the model was calibrated with the IDW2 interpolation and 158 precipitation

stations and not recalibrated with all different precipitation inputs and interpolation schemes. This setup is assumed to capture

the spatial variation of precipitation in our study area.

The best model performance was obtained with the parameter set of krec 0.8, dr 9, kd 1.5 and ki 2. These setup results in a

model performance for the river runoff in the calibration period of summer 2009 with an NSE of 0.79 and KGE of 0.76. The160
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validation period of summer 2010 results in an NSE of 0.67 and KGE of 0.81. After Moriasi et al. (2007) our model setup has

a very good performance in the calibration period and a good performance in the validation period.

Figure 2. WaSiM model setup including modules and input data sets used in this study (created after scheme of Schulla (2019)). Focus of

this study is to evaluate runoff output data (box marked in dark blue) simulated by WaSiM with various precipitation data resolutions at input

(blue box) and using different interpolation schemes (violet box).

3.2 Experimental design

Our study design is visualized in Fig. 3. We are analyzing simulated runoff in different catchments and subcatchments (Sect.

2.1). Especially different station network densities for the precipitation input are in focus (Sect. 3.2.1). The six heavy precipi-165

tation events with focus on three short-duration and three long-duration events are analyzed in Sect. 3.2.2. The three different

interpolation methods, which are already implemented in WaSiM, are explained in Sect. 3.2.3. The analysis with focus on

runoff time series and peak flow deviation is presented in Sect. 3.2.4.

3.2.1 Selection of precipitation station network densities

To obtain precipitation input data at various spatial resolutions, we define six precipitation subnetworks consisting of different170

numbers of rain gauges ranging from 5 to 158 (Table 3). For instance, the lowest-density network (5-Stations) is defined using

ZAMG stations only, with a mean station distance of 11 km. This could be a normal setup for operational use of hydrological
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Figure 3. Overview of the study design with total catchment and subcatchments, gauge station subnetworks and full precipitation network,

analyzed short- and long-duration events, spatial interpolation schemes (Inverse Distance Weighting with power of 2 (IDW2) and 3 (IDW3);

Thiessen Polygons (TP)) for precipitation input data, and the key runoff output data analyzed.

models in Austria. When we include precipitation data from AHYD, with a plus of three stations, we get the 8-Stations case

and a mean station distance of 10.5 km. This would also be a typical setup for operational use, if a second source collects some

additional precipitation data. Then we double the amount of stations including eight WEGN stations (16-Stations), which175

are selected to provide a good spatial coverage of precipitation data and end up with a mean station distance of 6.2 km. We

double the number of gauges to define the 32-Stations and the 64-Stations case, with a mean station distance of 4.0 km and

2.4 km, respectively. All available precipitation stations, 158 in total, are our reference (Ref-158-Stations) with a mean station

distance of 1.4 km. We assume that the most accurate areal precipitation information can be obtained from Ref-158-Stations

and therefore we calibrated the model with this setup.180

3.2.2 Selection of precipitation events

We selected heavy precipitation events among the top 10 % heaviest rainfall days during summer (May to September) within the

10-years period of 2007 to 2016 (O and Foelsche, 2019). Three small-scale short-duration and three large-scale long-duration

events are selected through visual inspection of the WEGN and INCA data over the study area (Fig. 4). In Table 4 you find the

three heaviest short-duration precipitation events, as well as the three heaviest long-duration events. 2009 was the year with the185

heaviest events in our study period. The heaviest short-duration event (short-1) was on 10-Aug-2009 with 34 mm precipitation

and a peak runoff at station Neumarkt/Raab of 107 m3 s−1, a HQ1 event. The biggest event, the long-1 event measured from

22-Jun-2009 until 24-Jun-2009 with 121 mm precipitation lead to a peak runoff of 244 m3 s−1 at Neumarkt/Raab. This "long-1
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Table 3. Precipitation station subnetwork cases with the total number of stations per subnetwork, together with the specific station data

source (Z - ZAMG, A - AHYD, W - WEGN) and estimated mean station distance, the latter calculated with an ArcGIS tool.

Gauge Subnetwork Number (source) Mean Station

Case of Stations (Z/A/W) Distance [km]

5-Stations 5 (5/-/-) 11.0

8-Stations 8 (5/3/-) 10.5

16-Stations 16 (5/3/8) 6.2

32-Stations 32 (5/3/24) 4.0

64-Stations 64 (5/3/56) 2.4

Ref-158-Stations 158 (5/3/150) 1.4

event" (23-Jun-2009) resulted in a flood peak bigger than a HQ10. The other selected heavy precipitation events lead to runoff

peaks smaller than a HQ1.190

Figure 4. Precipitation time series of the "short-1 event" measured by WEGN and ZAMG stations (left panel) over the WEGN network area

(red box in the four right panels). "WEGN" shows mean areal precipitation computed from the 150 stations (black line) with a 5th to 95th

percentile range among the stations (gray shaded), while "ZAMG" shows mean precipitation (red line) obtained from the 3 ZAMG stations

with a min-max range across the stations (yellow shaded). The maps sequence (four right panels) shows the evolution of the precipitation

event as captured by the gridded INCA analysis over the WEGN network (red box) and the larger Raab catchment region (black box).
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https://doi.org/10.5194/hess-2020-453
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 4. Precipitation events selected for this study and associated key characteristics. The precipitation information indicated for the events

is estimated from WEGN data. The runoff information is the measured peak runoff at gauging station Neumarkt/Raab.

Event Date Duration [h] Total precipitation [mm] Peak hourly precipitation [mm] Peak runoff [m3 s−1]

short-1 10-Aug-2009 4 34 19 107

short-2 05-Aug-2010 4 33 18 27

short-3 01-Sep-2011 4 31 26 26

long-1 23-Jun-2009 65 121 10 244

long-2 17-Sep-2010 54 62 5 55

long-3 31-Aug-2012 37 50 4 18

3.2.3 Spatial interpolation schemes

Several interpolation methods are implemented in WaSiM, e.g. TP, IDW, Elevation Dependent Regression, as well as different

combinations (Schulla, 1997). In this paper, we test two different IDW setups and the TP, which are widely used interpolation

methods in hydrological studies (Goovaerts, 2000; Ly et al., 2013; Szcześniak and Piniewski, 2015). We decided not to include

height information for precipitation map creation, because the elevation differences in the area are fairly small (height differ-195

ences no more than about 300 m). IDW is the sum of all contributing station data with specific weights (Schulla, 1997). It is

calculated with the following equations (1) and (2):

ẑ (u) =
∑

j

(wj · z (uj)) (1)

with wj =
1

d(u,uj)
p ·

1
C

and C =
∑

j

1
d(u,uj)

p follows
∑

j

wj = 1 (2)

ẑ (u) interpolated value at location u

wj weight of the observed value at the station j

z (uj) observed value at the station j

d(u,uj) distance to the station j

p weighting power of the inverse distance

200

In our study we use the standard weighting power p of 2 (IDW2) and for comparison also the weighting power p of 3

(IDW3). In WaSiM, all stations in a specific radius are used for the interpolation. Only one specific search radius can be

selected, which is then applied for all stations. In our study, we formally set the search radius to 50 km to be able to include
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the surrounding weather stations also in subregions with larger station distances, which is necessary to get a robust coverage of

the total catchment area. With the TP interpolation scheme, always the precipitation data of nearest station are taken. So, each205

grid cell of the model is getting the nearest station information and the formed polygons (Thiessen Polygons) are representing

lines of equal distance between two stations (Schulla, 1997). Hence TP is a simpler method than IDW, but still widely used in

hydrological modeling (Zeng et al., 2018; Meselhe et al., 2009; Kobold and Brilly, 2006).

3.2.4 Runoff analysis approach

In our study, we analyze the event-specific time series of runoff and peak flow deviation. Time series are visualized for all210

events individually, but combined with different station network densities and interpolation schemes. For each catchment,

interpolation method and event, the peak flow deviation in percent is calculated individually. For this purpose, the maximum

runoff value is calculated for the simulation results of every subnetwork case (MAX value) and compared to the maximum

runoff value of the full-network reference case (MAX Ref158Stations), which best captures the "true" spatial variability of

precipitation in the study area. This deviation metric is hence computed as follows:215

peak flow deviation [%] =
(MAX value)− (MAX Ref158Stations)

(MAX Ref158Stations)
× 100. (3)

4 Results

4.1 Results for individual example events

In this section we focus on individual precipitation events. Figure 5 shows an example map of the interpolated precipitation

data on the 100 m x 100 m grid of WaSiM, as well as the resulting runoff in the representative small subcatchment Haselbach220

(12 km2) for the short-1 event. The results of 5-Stations and Ref-158-Stations respectively with the interpolation schemes of

IDW2 and TP are visualized. With the 5-Stations case, the maps of the two interpolation schemes and the resulting runoffs

at Haselbach are very different. In the case of Ref-158-Stations the interpolation schemes have a smaller impact on the areal

precipitation estimation, compared to 5-Stations case. For the Haselbach at this short-1 event the difference between the IDW2

and TP interpolation under the 5-Stations case is more pronounced as the difference between the 5-Stations and Ref-158-225

Stations cases.

In Fig. 6 the runoff time series of the short-1 event and the long-1 event for the interpolation schemes of IDW2 and TP are

visualized. The three columns show the results for all station densities for the small tributary Haselbach (12 km2), the biggest

tributary Grazbach (54 km2) and the total catchment Neumarkt/Raab (987 km2).

The short-1 event at Haselbach shows a special characteristic, because the setup with 8-Stations shows a second runoff230

peak. Including also WEGN stations in the area (16-Stations case), the second peak is only marginally visible in the IDW2

case, but not under the TP scheme.
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Figure 5. Precipitation maps using the WaSiM interpolation schemes of Inverse Distance Weighting with power of 2 (IDW2) and Thiessen

Polygons (TP) for the short-1 event (10-Aug-2009 at 17:30), for the 5-Stations and Ref-158-Stations subnetwork cases (upper-left four

panels). The time series (bottom row and right column panels) show the precipitation (dashed, from top) and the modeled runoff (solid) of

this event in the representative small subcatchment Haselbach (12km2).

Across the gauge density no systematic variation of simulated runoff peaks is observed. For instance, while the lowest runoff

of 1.4 m3 s−1 is simulated from 8-Stations with IDW2, the highest runoff of 3.4 m3 s−1 results from 32-Stations with the same

interpolation scheme. This is the same for the TP interpolation scheme. We find the lowest runoff of 1.6 m3 s−1 from the 8-235

Stations subnetwork, while the highest runoff of 4.1 m3 s−1 from the 32-Stations case. The spread between the lowest and

highest runoff is around 75 % for IDW2 and 80 % for the TP interpolation scheme.

At Grazbach the IDW2 interpolation with 8-Stations also shows the lowest runoff with 6.4 m3 s−1. Less stations, so the

5-Stations case, result in more runoff with 7.4 m3 s−1. The other cases from the 16-Station case (9.3 m3 s−1) to the Ref-

158-Stations case (10.9 m3 s−1) show increasing runoff with each step. Under the TP interpolation scheme the 5-Stations and240
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8-Stations cases are resulting in the same runoff with 6.6 m3 s−1. The runoff with 32-Stations (9.9 m3 s−1) is a little bit lower

than the 16-Stations case (10.2 m3 s−1). The cases with 64-Stations and Ref-158-Stations are almost the same. The spread

between the lowest and highest runoff is for both interpolation schemes around 50 %.

For the short-1 event the Neumarkt/Raab catchment shows a very similar runoff curve for the two interpolation schemes of

IDW2 and TP. The Ref-158-Stations and 64-Stations cases show the highest runoff with 94 m3 s−1 and 95 m3 s−1 for IDW2245

and 98 m3 s−1 and 99 m3 s−1 for the TP case. The lowest runoff with 56 m3 s−1 (IDW2) and 54 m3 s−1 (TP) results from the

8-Stations case. The spread between these runoffs is also for both interpolation schemes around 50 %.

The runoff of the long-1 event is more than twice as high as the one of the short-1 event. Also, the order and maxima and

minima are very different between the two. The IDW2 and TP interpolation schemes lead to a different runoff curve order

and even different curve shapes. This becomes visible at Haselbach runoff curves with different shapes of the two interpolation250

schemes and different maxima and minima 6.0 m3 s−1 (Ref-158-Stations) to 7.4 m3 s−1 (5-Stations) for IDW2 and 5.1 m3 s−1

(8-Stations) to 6.4 m3 s−1 (16-Stations) for the TP interpolation scheme. However, the spread of around 20 % under both

interpolation schemes, is very similar. Visually checked, especially the 5-Station case misses the first little peak under both

interpolation schemes.

At Grazbach the lowest runoff under the IDW2 interpolation scheme is the 16-Stations case with 30 m3 s−1 and the highest255

is the 5-Stations case with 34 m3 s−1 , so a spread of 14 %. The TP interpolation scheme also has the lowest runoff with

31 m3 s−1 under the 16-Stations case, and again the highest under the 5-Stations case with 39 m3 s−1 , but it results in a spread

of 25 %.

The spread at Neumarkt/Raab with 13 % (IDW2) and 20 % (TP) is quite similar to the spread at Grazbach, as well as the

highest values under the 5-Stations case (270 m3 s−1 (IDW2) and 287 m3 s−1 (TP)). But the order is different between the260

two. The lowest runoff is simulated under the 64-Stations case for IDW2 with 246 m3 s−1 and the 158-Ref-Stations for the TP

interpolation scheme with 237 m3 s−1 .

These are examples of one short- and one long-duration event, for three catchments, but they do not cover the total range of

setups and results. Therefore, combined figures are shown in the next Sect. 4.2.
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Figure 6. Precipitation and associated runoff time series for the short-1 event (10-Aug-2009) (top six-panel plate) and long-1 event (23-Jun-

2009) (bottom six-panel plate), respectively, for all five subnetwork cases and the full Ref-158-Stations network. Results are shown for the

Inverse Distance Weighting with power of 2 (IDW2) and Thiessen Polygons (TP) interpolation schemes (top and bottom rows per plate), for

the subcatchment Haselbach (left) and Grazbach (middle) as well as total catchment Neumarkt/Raab (right).
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4.2 Combined results for all events265

Figure 7 shows the peak flow deviations as calculated with Eq. (3) for all analyzed cases. It is visible that the different short- and

long-duration rainfall events lead to a very different runoff picture, while the interpolation schemes and different catchments

are much more similar. Lower station densities (e.g. 5-Stations, 8-Stations) mostly show a bigger deviation to the Ref-158-

Stations full network case (darker colors) than cases with more stations (lighter colors). The three short events show more

extreme differences (darker colors) between the station densities than the three long events (lighter colors). In the comparison270

between the (sub)catchments, no single (sub)catchment is especially noticeable.

The long-duration events show a slight tendency for overestimation of runoff (more blueish colors), while the short-duration

events over- and underestimate (bluish and reddish colors). The TP interpolation scheme generally shows the most extreme

values (darker colors) and the IDW2 the lowest variability. The runoff results for the IDW3 interpolation scheme lie in this

respect between those from the TP and IDW2 interpolation schemes. The northern catchments Auersbach, Kornbach and275

Grazbach do not show differences if we simulate with 5- or 8-Stations subnetworks under the TP interpolation scheme, because

of their location in relation to these station locations. Under the IDW2 and IDW3 interpolation schemes differences are present

as expected.

For the short-1 event under all three interpolation schemes and for all (sub)catchments, the 8-Stations subnetwork shows

the strongest negative peak flow deviation, amounting to near –45 %. The Haselbach subcatchment shows a slightly different280

behavior than the others, with a positive peak flow deviation for the 5-Stations case under the TP interpolation and the most

positive value of around +30 % with the 32-Stations subnetwork. Compared to the short-1 event, the short-2 event shows a

more positive peak flow deviation pattern. The 5-Stations and 8-Stations cases show a very different picture between the IDW

and TP interpolation schemes, e.g., Saazerbach 8-Stations around –20 % with IDW2 and around –30 % with IDW3, but around

+5 % with TP, or Kornbach 8-Stations IDW2 around 0 %, IDW3 +10 %, but TP +80 %. The short-3 event shows a very strong285

positive peak flow deviation for the northern subcatchments (Grazbach, Auersbach, Kornbach) and a strong negative peak

flow deviation for the southern catchments (Haselbach, Saazerbach). This event also shows the strongest peak flow deviation

of all events and all simulations ranging from -78 % to +220 %. The runoff gauges at the main river Neumarkt/Raab and

Feldbach/Raab, seem to reflect the mix of extreme positive and extreme negative peak flow deviations with maximum values

of around +30 % and –35 %.290

The long-1 event shows very little peak flow deviations (smaller than around 15 %) with IDW2 and IDW3 interpolations,

except for the Haselbach. Under the TP interpolation, the 5-Stations and 8-Stations subnetworks result in around +20 % to

+30 % peak flow deviation for all the other catchments. The 16-Stations case at Kornbach shows a negative (around –10 %

to –20 %) peak flow deviation under all interpolation schemes. The long-2 event looks very similar to the long-1 event, also

with little peak flow deviations. The Auersbach shows the strongest peak flow deviations with values between around +25 %295

and –15 %. The 5-Stations and 8-Stations cases result in a positive peak flow deviation in all catchments. The long-3 event

shows quite a mixed picture with positive and negative peak flow deviations. This event also shows the strongest deviations of

the long-duration events. The Auersbach shows a negative peak flow deviation under all station subnetworks and interpolation
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schemes. The Haselbach shows a peak flow deviation of +25 % for the 5-Station case under the IDW2 and IDW3 interpolation,

but no deviations for almost all other cases. Only the 64-Stations subnetwork under the IDW3 interpolation scheme result in a300

–25 % peak flow deviation in these subcatchment.

By comparing all events together, some results can be summarized for individual (sub)catchments. For the river Raab

gauging stations Feldbach/Raab and Neumarkt/Raab, the peak flow deviation starting from the 32-Stations subnetwork is

almost the same as the Ref-158-Station full network (mostly smaller than 10 %). This implies that the 32 stations would be

enough for adequately enabling the simulation of the river Raab runoff. Under the long-duration events for the full-catchment305

gauge Neumarkt/Raab, and using the IDW2 interpolation, even the 5-Stations or 8-Stations operational networks appear to be

sufficient, given that they exhibit less than around 10 % deviation. Overall, for the long-duration stratiform rainfall events, the

64-Stations subnetwork is almost everywhere as good as the Ref-158-Stations full network, independent of the interpolation

scheme.

In contrast, for the short-duration events and the comparatively small subcatchments, the station density is evidently much310

more important, and the peak flow is much more event-dependent. For the short-1 event the 64-Stations subnetwork is almost

as good as the Ref-158-Stations full network (deviation smaller than 6 %). Only for the Haselbach, the 32-Stations subnetwork

under the TP interpolation scheme would not be enough (more than 30 % deviation); here, curiously, the 5-Stations case appears

better with only 13 % peak flow deviation. For the short-2 and short-3 events even the 64-Stations subnetwork would not be

as good as the Ref-158-Stations full network, given its almost 20 % deviation at Saazerbach (short-2 event) and Auersbach315

(short-3 event).
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Figure 7. Peak flow deviation to Ref-158-Station case as a grid-cell plot with each cell indicating the magnitude of the deviation on a

color-scale, for the cases of all six events (figure panels), all (sub)catchments (columns per panel), all three interpolation schemes (stacked

subpanels per panel) IDW2 and IDW3 - Inverse Distance Weighting with power of 2 and 3, TP - Thiessen Polygons, and all five subnetwork

cases (rows per subpanel) analyzed in this study.
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In Fig. 8 we visualize the summarized results for the peak flow deviations as a function of all station subnetworks. This sum-

mary view clearly highlights that the uncertainty in runoff simulations due to interpolation schemes and gauge network density

is much greater for short-duration convective precipitation events. We further find that the direction of biases (overestimation

vs underestimation) is affected primarily by the gauge network density rather than the interpolation scheme. For long-duration320

heavy precipitation events, we find faster decreases in biases with increasing number of gauges in the network. 16 stations

in our study area (around 500 km2) yield satisfactory performance, with biases lower than 10 % for all subnetworks of at

least this station number and all interpolation cases. Note that our subnetworks represent a quite regularly distributed gauge

configuration, and therefore uncertainty in the runoff simulations can be somewhat greater for more irregular gauge location

configurations.325

Figure 8. Peak flow deviation to Ref-158-Station case of the mean over all (sub)catchments for all subnetwork cases (x-axis of panels) and

interpolation schemes (different line styles, see legend) IDW2 and IDW3 - Inverse Distance Weighting with power of 2 and 3, TP - Thiessen

Polygons, respectively, for the three short events (left), the three long events (middle), and the mean each over the short and long events

(right).

5 Discussion

Here we discuss the diversity of results of the station densities, interpolation schemes, (sub)catchments, and individual events

in more detail and in synthesis. The mean over all catchments of the long-duration events shows a "sufficiency threshold" at

the 16-Stations subnetwork, with just little runoff change (< 6%) for more stations. This equals a mean station distance of

around 6 km, or around 16 stations per 1000 km2. Beyond this station density, no strong further improvement of the simulated330

runoff can be observed in average over all catchments for long-duration events. In contrast, the mean over all catchments of

short-duration events only show a "sufficiency threshold" at the 64-stations subnetwork, with just little runoff change (< 6%)

for more stations. Here a mean station distance of around 2.5 km, or rather around 64 stations per 1000 km2 are needed.

19

https://doi.org/10.5194/hess-2020-453
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Such thresholds go along with the literature, where no better performances after crossing specific station densities are seen

(e.g. Bárdossy and Das, 2008; Dong et al., 2005; Lopez et al., 2015; Xu et al., 2013). For example, Lopez et al. (2015) mention335

an increase of performance with a denser station network up to 24 gauges per 1000 km2, but no improvement after that for

up to 40 stations in the Thur basin (basin area around 1700 km2). Xu et al. (2013) found, for a large-scale catchment, that the

performance leveled off after 93 stations (1 rain gauge per 1000 km2), which was about 50 % of the 181 available stations in

the catchment of the Xiangjiang River (94 660 km2). They also noted that below 38 stations (0.4 rain gauges per 1000 km2)

the model performance was pretty poor. Dong et al. (2005) found in their catchment, Qingjiang river (12 209 km2) a critical340

number at 5 out of 24 precipitation stations.

In contrast, in our high-resolution case, the individual fairly small catchments do not show such an expected threshold,

especially for short-duration events. However, also the long-duration events do not show a salient threshold in all catchments

or events. Given its density of 1 station per 2 km2, the station network in particular of the WEGN area is much denser than

any of the other networks studied. These studies used station densities such as about 2 station per 1000 km2 Xu et al. (2013)345

or up to 12 stations per 1000 km2 Lopez et al. (2015). Our study hence detects and highlights the strong catchment and event-

dependence of the precipitation densities especially for short-duration events at 1-km-scale spatial resolutions. Therefore, for

proper modeling of the runoff from heavy convective precipitation events a highly dense station network is very important.

This was also seen to some degree by St-Hilaire et al. (2003), again a study that addressed larger scales, where areas with

high precipitation were better defined by denser networks for the long term (total annual precipitation) and short term (summer350

convective events).

For our three short-duration events, the total precipitation amount of 31 mm to 34 mm is very similar, but it leads to different

simulated runoff curves. The short-1 event has a maximum peak flow of 107 m3 s−1, while the short-2 and short-3 events are

similar but smaller with 27 m3 s−1 and 26 m3 s−1. Overall, the precipitation amount might lead to different runoff curves,

depending on the location of gauges and storm core (O and Foelsche, 2019). From the runoff modeling point of view, it also355

depends on the specific station locations and the measured precipitation amount at specific stations. This becomes clear with

the huge over- and underestimations of peak flow, depending on the different station densities (Fig. 7). The three long-duration

events show different runoff peak with 244/55/18 m3 s−1 and a total precipitation amount of 121/62/50 mm, respectively. The

peak flow deviations are very similar for the long-1 and long-2 event. The most stratiform event with smallest hourly peak

flows (long-3 event) shows a different picture, even though the total precipitation is similar to the long-2 event. In summary, we360

can learn from this that in small catchments for short- and long-duration heavy precipitation events the amount of peak runoff

and of total precipitation are not directly related to the level of observed peak flow. The latter are driven by the specific event

characteristics in a more complex manner.

We emphasize that the explicit study of the hydrological response to different precipitation events is crucial. Many earlier

studies have evaluated the "accuracy" of (remote-sensing) gridded rainfall event data through direct comparison with ground365

gauge measurements (e.g. O et al., 2017; Kirstetter et al., 2012; Lamptey, 2008). Now this study highlights that it is also im-

portant to evaluate the performance of precipitation datasets with various resolutions in terms of hydrological runoff response.
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Such evaluation will provide practical guidance more widely both to rainfall data providers as well as to hydrological model

users.

If the gauge network is sparse, positive bias values dominate the peak flow deviation for long-duration events. Sparse station370

data extrapolate too "heavy" into data-void areas. The short-duration events do not show this one-sided effect, both over-

estimation and underestimation occur. The runoff for the short-duration events is much more event-depended, where some

precipitation stations have a positive or negative influence. This reflects the more complex space-time structure of small-scale

convective rainfall events. It goes along with the study by Lobligeois et al. (2014), where they analyzed that rainfall-runoff

processes are strongly variable between the catchments and precipitation events.375

Over all events, (sub)catchments, and interpolation schemes very salient is the strong effect of the increase from the 5-

Stations to the 8-Stations subnetwork, where on top of the ZAMG stations the AHYD stations are included. This sparse

network change shows a particularly big variability range for small catchments, sometimes even with a second runoff peak

(Haselbach). Especially the AHYD station Waltra, with its location closely south of the WEGN domain, has a strong influence.

In general, it was recently found, as well based on WEGN data, that the uncertainty in convective precipitation measurements380

is roughly exponentially decreased with an increase of gauge numbers (O and Foelsche, 2019).

As is expected for the small subcatchments, the station density has a bigger influence than for the total Raab catchment as

observed at the runoff gauges Feldbach/Raab or Neumarkt/Raab. Also, the specific spatial location of the precipitation stations

is much more important for small catchments. It has already been noted in other studies that the location of the precipitation

measurement is important on all scales (e.g. Lopez et al., 2015; Obled et al., 1994; Beven and Hornberger, 1982) but as we find385

here it again significantly increases for small catchments (10 km2 to 50 km2 area).

Turning specifically to characteristic influences of the interpolation scheme, several aspects are salient, including the special

properties of TP interpolation. The subcatchments north of river Raab (Auersbach, Kornbach and Grazbach) are not affected

by the AHYD stations (8-Stations case) under the TP interpolation because these stations are located west, south, and far east

of the study area. With the IDW2 and IDW3 interpolation scheme all stations within the search radius are included. Therefore,390

the AHYD stations are somewhat influencing the interpolated precipitation and thus also the modeled hydrological runoff. This

well exemplifies the property that the precipitation maps of the gridded rainfall from the IDW and TP interpolation schemes

are generally very different (Fig. 5). The root cause is the methodological difference that the borders between polygons of the

TP interpolation are very stiff.

In extreme cases of high spatial rainfall variability, there are sharp differences of precipitation amounts between one polygon395

of TP interpolation and its neighbor. If one depends on few-station networks this "extreme" behavior of the gridded precipitation

input becomes clear under TP interpolation, where the peak flow deviation is much more pronounced (Fig.s 7 and 8). The

individual stations are much more influential compared to using the IDW interpolation schemes. Among the IDW schemes, the

peak flow deviations of IDW3 are similar to IDW2, but with a tendency of IDW3 to be closer to TP interpolation. This occurs

because the higher IDW3 weighting power gives less weight to surrounding stations than IDW2, driving IDW3 results towards400

TP results where surrounding stations do not receive any weight.
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Overall, if only a few stations are available, the IDW interpolation schemes, and in particular IDW2, are much more reliable.

The TP interpolation scheme is not recommended for areas with complex topography and low station densities, in line with

findings of Kobold and Brilly (2006). Here we note that the IDW interpolation schemes in our study always include all stations,

even the stations which are quite far away. This is adopted since WaSiM can only handle a single value as the IDW influence405

distance for all stations Schulla (2019). This value needs to be large enough to include relevant surrounding stations all over

the study area (and was hence set to 50 km in our case). It would be beneficial, however, to change this value depending on

varying neighborhood station distances across the network, which may further improve the gridded interpolation results from

IDW.

Dirks et al. (1998) already recommended the simple TP interpolation scheme while using a spatially dense station network.410

Given the runoff simulations in our study does not show a strong interpolation scheme dependence under the Ref-158-Stations

full network, it points as well into the direction that TP interpolation is sufficient for sufficiently dense networks. That a more

advanced interpolation scheme does not necessarily show better performance under a high-density network was also found in

the studies of Borga and Vizzaccaro (1997) and Syed et al. (2003).

In summary, the influence of the interpolation scheme is clearly visible, especially for few-station networks, but even there415

it is often less pronounced than the one of different station densities. Therefore, the impact of station network density is clearly

much more significant for runoff simulations than the one of reasonably chosen interpolation schemes.

6 Conclusions

We used the highly dense station network WEGN in the southeastern Alpine foreland of Styria, Austria. In addition to that

eight stations of the Austrian operational station network, were used to analyze the influence of rain gauge network density420

and interpolation schemes on simulated stream and river runoff, with a focus on small catchments (10 km2 to 50 km2). We

calibrated the hydrological model WaSiM with 158 precipitation stations (full network) and performed simulations based on

short- and long-duration rainfall events. We use a cascade of subnetworks, ranging from 5 and 8 operational stations to 16,

32, and 64 station subnetworks, together with the widely used IDW and TP interpolation schemes. We find that our first

key question "How many stations do we need to reliably model hydrological runoff under heavy rainfall events?" cannot425

be answered in general for small catchments, due to the complex spatiotemporal characteristics especially of short-duration

convective events. The influence of the station network density is specifically catchment- and event-dependent, but we were

able to derive average guideline results.

For long-duration stratiform-type events (lasting typically longer than a day) and in average over all catchments a station

density with a mean station distance of around 6 km (16-Stations network in our area) is found to be sufficiently dense for430

robust runoff modeling including reliable peak runoff estimation. This station density is even significantly higher than the

WMO recommendation for a minimum of one station per 250 km2 in mountainous areas WMO (2008), corresponding to a

16 km mean station distance. For the average over all catchments from the short-duration heavy convective rainfall events

(lasting typically a few hours only) we find at least a 64-Stations network is needed for runoff modeling with reliable peak
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runoff estimation (mean station distance of around 2.5 km). Especially for short-duration convective events a dense station435

network (or other dense high-quality rainfall data product) is crucial.

The second key research question "How large is the influence of interpolation scheme on runoff results under different station

network densities?" can be answered along with a strong station density dependency. For very dense station networks (in our

case 64 to 158 stations, mean distance about 1.4 to 2.4 km) the specific interpolation scheme is relatively unimportant, as long as

reasonably chosen. Therefore, we find the simpler TP interpolation scheme already sufficient. In contrast, the sparse operational440

network sizes (in our case with 5 to 8 stations, mean distance about 11 km) perform better under the IDW2 interpolation

scheme. Under such a sparse station number we find that including a few stations more (e.g., 5 or 8 stations) can result in very

different runoff curves, even spurious secondary runoff peaks, in small catchments. Overall the interpolation scheme is found

clearly less influential than the gauge network density on simulated runoff. Hence when analyzing and interpreting modeled

runoff based on rainfall input data most importantly the station network density influences the results, as long as a reasonable445

interpolation scheme is chosen.

In line with expectations, the larger Raab catchment, observed at runoff gauges Feldbach/Raab (689 km2) and Neumarkt/Raab

(987 km2), appears to smooth over and compensate some of the extreme cases of smaller subcatchments. That is, the depen-

dence on specific rainfall event characteristics and station network density is mitigated in the main river runoff. For many

local-scale hazards such as severe overland flooding, flashfloods, and hillslope landslides triggered by short-duration convec-450

tive events, more dense observations are critical for reliable hydrological modeling for hazards risk estimation and protection.

While the WEGN is a unique long-term research facility of sufficiently high station density, it is quite limited in area. Densifi-

cation and expansion of runoff and rainfall gauge networks in this and many other risk-prone areas, would therefore be a great

and much needed improvement on top of existing observations. An alternative are other data sources enabling suitable data

products at high spatiotemporal resolution such well calibrated high-quality precipitation radar data.455

In deploying new stations, the selected station locations have a strong effect on gridded precipitation fields and therefore

also on the runoff results, especially in small catchments. In this study we have selected subnetworks of gauges from the

WegenerNet with quite regular distribution, given we had a quite flexible basis to choose from. A more detailed analysis, with

random picking and evaluating more closely also irregular distributions, may be a useful planning and design step for new

station placements in other areas. This would help to arrive at an optimal rain gauge network design for hydrological purposes.460

Since in almost no other places worldwide such dense networks are available, the runoff impact results arrived here for

the Raab catchment and its subcatchments in southeastern Austria need to be "transferred" to other regions with due care of

comparability of weather, hydrology, and landscape characteristics (cf. Kirchengast et al., 2014; Schroeer and Kirchengast,

2018; Schroeer et al., 2018). With such due care, we consider the essential results and conclusions transferable to many other

middle latitude land regions. For the huge number of ungauged or extremely sparsely observed small catchments, the awareness465

of both level of skill and limitations of rainfall-runoff modeling as reported here will be particularly crucial.
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Code and data availability. The hydrological model WaSiM is available via http://wasim.ch (version used: Richards-10.02.03). The Wegen-

erNet data are available at https://doi.org/10.25364/WEGC/WPS7.1:2019.1 (Fuchsberger et al. 2019: WegenerNet climate station network

Level 2 data version 7.1 2007-2018; Wegener Center, Univ. of Graz, Austria). ZAMG data are available from the Austrian Weather Service

(www.zamg.ac.at) and AHYD data from the Austrian Hydrographic Service (https://ehyd.gv.at). HYDROBOD data are used from Klebinder470

et al. (2017) and are available on request from these authors. Geoinformation data are from state government offices of the States of Styria

and Burgenland and are available from the respective GIS services (www.gis.steiermark.at; https://geodaten.bgld.gv.at).
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