Articles | Volume 8, issue 4
https://doi.org/10.5194/hess-8-751-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/hess-8-751-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Towards reduced uncertainty in catchment nitrogen modelling: quantifying the effect of field observation uncertainty on model calibration
K. J. Raat
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
J. A. Vrugt
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
W. Bouten
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
A. Tietema
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
Centre for Geo-Ecological Research (ICG), Institute for Biodiversity and Ecosystem Dynamics (IBED) - Physical Geography, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
E-mail for corresponding author: k.raat@science.uva.nl
Viewed
Total article views: 1,642 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
915 | 645 | 82 | 1,642 | 95 | 79 |
- HTML: 915
- PDF: 645
- XML: 82
- Total: 1,642
- BibTeX: 95
- EndNote: 79
Cited
29 citations as recorded by crossref.
- Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management Y. Zheng & F. Han 10.1007/s00477-015-1091-8
- Assessing Effects of Data Limitations on Salinity Forecasting in Barataria Basin, Louisiana, with a Bayesian Analysis E. Habib et al. 10.2112/06-0723.1
- Over-parameterised, uncertain ‘mathematical marionettes’ — How can we best use catchment water quality models? An example of an 80-year catchment-scale nutrient balance A. Wade et al. 10.1016/j.scitotenv.2008.04.030
- Parameter sensitivity analysis and prediction error in field-scale NO3-N modelling A. El-Sadek & R. Vázquez 10.1016/j.agwat.2012.05.010
- An application of the GLUE methodology for estimating the parameters of the INCA-N model K. Rankinen et al. 10.1016/j.scitotenv.2006.02.034
- Parametric Uncertainty Analysis of Predictive Models in Louisiana's 2012 Coastal Master Plan E. Habib & D. Reed 10.2112/SI_67_9
- When should stream water be sampled to be most informative for event-based, multi-criteria model calibration? L. Wang et al. 10.2166/nh.2017.197
- Uncertainty assessment of a process-based integrated catchment model of phosphorus S. Dean et al. 10.1007/s00477-008-0273-z
- Two-Phase Monte Carlo Simulation for Partitioning the Effects of Epistemic and Aleatory Uncertainty in TMDL Modeling A. Mishra et al. 10.1061/(ASCE)HE.1943-5584.0001731
- Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China Z. Shen et al. 10.5194/hess-16-121-2012
- Bayesian uncertainty assessment of a semi-distributed integrated catchment model of phosphorus transport J. Starrfelt & Ø. Kaste 10.1039/C3EM00619K
- Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models A. Bouwman et al. 10.5194/bg-10-1-2013
- Assessment of the different sources of uncertainty in a SWAT model of the River Senne (Belgium) O. Leta et al. 10.1016/j.envsoft.2015.02.010
- COMPONENTS OF UNCERTAINTY IN SPECIES DISTRIBUTION ANALYSIS: A CASE STUDY OF THE GREAT GREY SHRIKE C. Dormann et al. 10.1890/07-1772.1
- Using spatially distributed parameters and multi‐response objective functions to solve parameterization of complex applications of semi‐distributed hydrological models R. Marcé et al. 10.1029/2006WR005785
- Impact of measurement error and limited data frequency on parameter estimation and uncertainty quantification F. Khorashadi Zadeh et al. 10.1016/j.envsoft.2019.03.022
- Dynamic response of land use and river nutrient concentration to long-term climatic changes G. Bussi et al. 10.1016/j.scitotenv.2017.03.069
- Modelling nitrogen in the Yeşilirmak River catchment in Northern Turkey: Impacts of future climate and environmental change and implications for nutrient management M. Hadjikakou et al. 10.1016/j.scitotenv.2011.02.038
- Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics R. Marcé & J. Armengol 10.5194/hess-13-953-2009
- Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors F. Han & Y. Zheng 10.1016/j.advwatres.2015.12.007
- Characterizing fast herbicide transport in a small agricultural catchment with conceptual models L. Ammann et al. 10.1016/j.jhydrol.2020.124812
- Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States B. Nolan et al. 10.1002/ps.3875
- Estimating seepage intensities from groundwater level time series by inverse modelling: A sensitivity analysis on wet meadow scenarios D. Cirkel et al. 10.1016/j.jhydrol.2010.02.009
- Sensitivity analysis of a catchment-scale nitrogen model N. McIntyre et al. 10.1016/j.jhydrol.2005.04.010
- A fast and effective parameterization of water quality models F. Khorashadi Zadeh et al. 10.1016/j.envsoft.2022.105331
- Considering spatial distribution and functionality of forests in a modeling framework for river basin management C. Lorz et al. 10.1016/j.foreco.2007.02.032
- Quantifying the Uncertainty of a Conceptual Herbicide Transport Model With Time‐Dependent, Stochastic Parameters L. Ammann et al. 10.1029/2020WR028311
- Modelling nitrogen fluxes from the land to the coastal zone in European systems: a perspective from the INCA project A. Wade et al. 10.1016/j.jhydrol.2004.07.041
- Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK) G. Bussi et al. 10.1016/j.scitotenv.2016.02.109
Latest update: 21 Nov 2024