Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000)
Abstract. Major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period. Sulphur outputs from these ecosystems were comparable to inputs during a period of relatively stable atmospheric deposition (10-35 mmol m-2 yr-1) around the 1930s. Atmospheric inputs of sulphur increased by three- to four-fold between the 1950s and 1980s to ~140 and ~60 mmol mm-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. Sulphur outputs were lower than inputs due to accumulation in soils, which was higher in forest soils than in the sparser alpine soils and represented 0.8-1.6 and 0.2-0.3 mol m-2, respectively, for the whole 1930-2000 period. In the 1990s, atmospheric inputs of sulphur decreased 80% and 50% in the Bohemian Forest and Tatra Mountains, respectively, and sulphur outputs exceeded inputs. Catchment soils became pronounced sources of sulphur with output fluxes averaging between 15 and 31 mmol m-2 yr-1. Higher sulphur accumulation in the forest soils has delayed (by several decades) recovery of forest lakes from acidification compared to alpine lakes. Estimated deposition of dissolved inorganic nitrogen was 53-75 mmol m-2 yr-1 in the Bohemian Forest and 35-45 mmol m-2 yr-1 in the Tatra Mountains in the 1880- 1950 period, i.e. below the empirically derived threshold of ~70 mmol m-2 yr-1, above which nitrogen leaching often occurs. Dissolved inorganic nitrogen was efficiently retained in the ecosystems and nitrate export was negligible (0-7 mmol m-2 yr-1). By the 1980s, nitrogen deposition increased to ~160 and ~80 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively, and nitrogen output increased to 120 and 60 mmol m-2 yr-1. Moreover, assimilation of nitrogen in soils declined from ~40 to 10-20 mmol m-2 yr-1 in the alpine soils and even more in the Bohemian Forest, where one of the catchments has even become a net source of nitrogen. In the 1990s, nitrogen deposition decreased by ~30% and DIN output decreased to < 70 and 35 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. New steady-state conditions, with negligible nitrogen export, could be reached in future but at lower nitrogen depositions than in the 1930s.
Keywords: emission, deposition, acidification, nitrogen-saturation, recovery, sulphate, nitrate, ammonium, mountain lakes