Articles | Volume 29, issue 23
https://doi.org/10.5194/hess-29-6959-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6959-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced baseflow separation in rural catchments: event-specific calibration of recursive digital filters with tracer-derived data
School of Engineering and Built Environment, Griffith University, Gold Coast, QLD, 4222, Australia
Felipe Bernardi
Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
Claudia Alessandra Peixoto de Barros
Soil Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
Daniel Gustavo Allasia
Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
Jean Paolo Gomes Minella
Soil Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
Rutinéia Tassi
Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
Néverton Scariot
Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
Cited articles
Ahiablame, L., Chaubey, I., Engel, B., Cherkauer, K., and Merwade, V.: Estimation of annual baseflow at ungauged sites in Indiana, USA, J. Hydrol., 476, 13–27, https://doi.org/10.1016/j.jhydrol.2012.10.002, 2013.
Apurv, T. and Cai, X. M.: Impact of droughts on water supply in US watersheds: The role of renewable surface and groundwater resources, Earth's Future, 8, e2020EF001648, https://doi.org/10.1029/2020EF001648, 2020.
Arnold, J. G. and Allen, P. M.: Automated methods for estimating baseflow and groundwater recharge from streamflow records, J. Am. Water Resour. Assoc., 35, 411–424, https://doi.org/10.1111/j.1752-1688.1999.tb03599.x, 1999.
Arnold, J. G., Allen, P. M., Muttiah, R., and Bernhardt, G.: Automated base-flow separation and recession analysis techniques, Ground Water, 33, 1010–1018, https://doi.org/10.1111/j.1745-6584.1995.tb00046.x, 1995.
Asano, Y., Uchida, T., and Ohte, N.: Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment, Geochim. Cosmochim. Ac., 67, 1973–1989, https://doi.org/10.1016/S0016-7037(02)01342-X, 2003.
Basso, R. E., Allasia, D. G., and Tassi, R.: Vazão de projeto na microdrenagem em locais sem dados de precipitação: estudo para o Rio Grande do Sul, Ambiente Construído, 19, https://doi.org/10.1590/s1678-86212019000300335, 2019.
Beatty, S. J., Morgan, D. L., McAleer, F. J., and Ramsay, A. R.: Groundwater contribution to baseflow maintains habitat connectivity for (Teleostei: Plotosidae) in a south-western Australian river, Ecol. Freshw. Fish, 19, 595–608, https://doi.org/10.1111/j.1600-0633.2010.00440.x, 2010.
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Bruijnzeel, L. A., McVicar, T. R., and Schellekens, J.: Global patterns in baseflow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, https://doi.org/10.1002/2013WR013918, 2013.
Beighley, R. E., Dunne, T., and Melack, J. M.: Understanding and modeling basin hydrology: interpreting the hydrogeological signature, Hydrol. Proc., 19, 1333–1353, https://doi.org/10.1002/hyp.5567, 2005.
Bell, F. C.: Generalized rainfall-duration-frequency relationships, J. Hydraul. Div., 95, 311–328, https://doi.org/10.1061/JYCEAJ.0001942, 1969.
Bloomfield, J. P., Allen, D. J., and Griffiths, K. J.: Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK, J. Hydrol., 373, 164–176, https://doi.org/10.1016/j.jhydrol.2009.04.025, 2009.
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096. https://doi.org/10.5194/essd-12-2075-2020, 2020.
Chapman, T. G. and Maxwell, A. I.: Baseflow separation – comparison of numerical methods with tracer experiments, in: Hydrology and Water Resources Symposium 1996: Water and the Environment, Barton, Australia, 539–546, ISBN 0858256495, 1996.
Cheng, S., Tong, X., and Illman, W. A.: Evaluation of baseflow separation methods with real and synthetic streamflow data from a watershed, J. Hydrol., 613, 128279, https://doi.org/10.1016/j.jhydrol.2022.128279, 2022.
USGS: Operating instructions for US DH-48 suspended-sediment hand sample, Report produced for the Federal Interagency Sedimentation Project, https://water.usgs.gov/fisp/docs/Report_J.pdf (last access: January 2025), 1965.
Collischonn, W. and Fan, F. M.: Defining parameters for Eckhardt's digital baseflow filter, Hydrol. Process., 27, 2614–2622, https://doi.org/10.1002/hyp.9391, 2013.
Cook, P. G.: The role of tracers in hydrogeology, Groundwater, 53, 1–2, https://doi.org/10.1111/gwat.12327, 2015.
Costa, F. M. and Bacellar, L. A. P.: The hydrogeologic potential conditioning factors of hydrographic catchments of Upper Velhas River Basin, Southeastern Brazil, Environ. Earth Sci., 59, 87–97, https://doi.org/10.1007/s12665-009-0007-7, 2009.
CSIRO and SKM: Baseflow assessment for the Murray-Darling Basin, CSIRO: Water for a Healthy Country National Research Flagship, 78 pp., 2010.
de Barros, C. A. P.: Dinâmica dos escoamentos na modelagem da produção de sedimentos em uma pequena bacia rural, PhD thesis, Centro de Ciências Rurais, UFSM, Santa Maria, Brazil, 195 pp., http://repositorio.ufsm.br/handle/1/3377 (last access: 2 October 2024, regional access restriction), 2016.
de Barros, C. A. P., Govers, G., Minella, J. P. G., and Ramon, R.: How water flow components affect sediment dynamics modeling in a Brazilian catchment, J. Hydrol., 597, 126111, https://doi.org/10.1016/j.jhydrol.2021.126111, 2021.
de Barros, C. A. P., Minella, J. P. G., Dalbianco, L., and Ramon, R.: Description of hydrological and erosion processes determined by applying the LISEM model in a rural catchment in southern Brazil, J. Soils Sediments, 14, 1298–1310, https://doi.org/10.1007/s11368-014-0903-7, 2014.
Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Eckhardt, K.: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods, J. Hydrol., 352, 168–173, https://doi.org/10.1016/j.jhydrol.2008.01.005, 2008.
Eckhardt, K.: Technical Note: Analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter, Hydrol. Earth Syst. Sci., 16, 451–455, https://doi.org/10.5194/hess-16-451-2012, 2012.
Furey, P. R. and Gupta, V. K.: A physically based filter for separating baseflow from streamflow time series, Water Resour. Res., 37, 2709–2722, https://doi.org/10.1029/2001wr000243, 2001.
Glas, R., Hecht, J., Simonson, A., Gazoorian, C., and Schubert, C.: Adjusting design floods for urbanization across groundwater-dominated watersheds of Long Island, NY, J. Hydrol., 618, 129194, https://doi.org/10.1016/j.jhydrol.2023.129194, 2023.
Gómez, D., Wendland, E., and Melo, D. D. D.: Empirical rainfall-based model for defining baseflow and dynamical water use rights, River Res. Appl., 36, 189–198, https://doi.org/10.1002/rra.3565, 2020.
Gonzales, A. L., Nonner, J., Heijkers, J., and Uhlenbrook, S.: Comparison of different base flow separation methods in a lowland catchment, Hydrol. Earth Syst. Sci., 13, 2055–2068, https://doi.org/10.5194/hess-13-2055-2009, 2009.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135), 1999.
Haberlandt, U., Klöcking, B., Krysanova, V., and Becker, A.: Regionalisation of the base flow index from dynamically simulated flow components – A case study in the Elbe River Basin, J. Hydrol., 248, 35–53, https://doi.org/10.1016/S0022-1694(01)00391-2, 2001.
Helfer, F., Bernardi, F. K., de Barros, C. A. P., Piccilli, D. G. A., Minella, J. P. G., Tassi, R., and Schlesner, A. A.: Calibrated Eckhardt's filter versus alternative baseflow separation methods: A silica-based approach in a Brazilian catchment, J. Hydrol., 644, 132073, https://doi.org/10.1016/j.jhydrol.2024.132073, 2024.
Hendershot, W. H., Savoie, S., and Courchesne, F.: Simulation of stream-water chemistry with soil solution and groundwater-flow contributions, J. Hydrol., 136, 237–252, https://doi.org/10.1016/0022-1694(92)90013-L, 1992.
Hugenschmidt, C., Ingwersen, J., Sangchan, W., Sukvanachaikul, Y., Duffner, A., Uhlenbrook, S., and Streck, T.: A three-component hydrograph separation based on geochemical tracers in a tropical mountainous headwater catchment in northern Thailand, Hydrol. Earth Syst. Sci., 18, 525–537, https://doi.org/10.5194/hess-18-525-2014, 2014.
Indarto, Novita, E., and Wahyuningsih, S.: Preliminary study on baseflow separation at watersheds in East Java regions, Agric. Agric. Sci. Procedia, 9, 538–550, https://doi.org/10.1016/j.aaspro.2016.02.174, 2016.
Jain, M. K.: Recession of discharge, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands, Dordrecht, 922–924, https://doi.org/10.1007/978-90-481-2642-2_437, 2011.
Kang, T., Lee, S., Lee, N., and Jin, Y.: Baseflow separation using the digital filter method: Review and sensitivity analysis, Water, 14, 30485, https://doi.org/10.3390/w14030485, 2022.
Kennedy, V. C.: Silica variation in stream water with time and discharge, Adv. Chem. Ser., 106, 94–130, https://doi.org/10.1021/ba-1971-0106.ch004, 1971.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Kouanda, B., Coulibaly, P., Niang, D., Fowe, T., Karambiri, H., and Paturel, J. E.: Analysis of the performance of base flow separation methods using chemistry and statistics in Sudano-Sahelian watershed, Burkina Faso, Hydrol. Curr. Res., 9, 1000300, https://doi.org/10.4172/2157-7587.1000300, 2018.
Lacey, G. C. and Grayson, R. B.: Relating baseflow to catchment properties in south-eastern Australia, J. Hydrol., 204, 231–250, https://doi.org/10.1016/S0022-1694(97)00124-8, 1998.
Ladson, A. R., Brown, R., Neal, B., and Nathan, R.: A standard approach to baseflow separation using the Lyne and Hollick filter, Australas, J. Water Resour., 17, 25–34, https://doi.org/10.7158/13241583.2013.11465417, 2013.
Latuamury, B., Osok, R. M., Puturuhu, F., and Imlabla, W. N.: Baseflow separation using graphic method of recursive digital filter on Wae Batu Gajah Watershed, Ambon City, Maluku, IOP Conf. Ser.: Earth Environ. Sci., 989, 012028, https://doi.org/10.1088/1755-1315/989/1/012028, 2022.
Laudon, H. and Slaymaker, O.: Hydrograph separation using stable isotopes, silica and electrical conductivity: An alpine example, J. Hydrol., 201, 82–101, https://doi.org/10.1016/S0022-1694(97)00030-9, 1997.
Lei, Y. N., Zhang, X. P., Ma, Q., Sun, Y. P., Zhang, J. J., Fu, Y. L., and Xu, J. P.: Responses of baseflow in Kuye catchment to the LUCC on the Loess Plateau of China, in: 19th International Congress on Modelling and Simulation (MODSIM2011), Perth, Australia, 3594–3600, https://doi.org/10.36334/modsim.2011.i6.lei, 2011.
Li, L., Maier, H. R., Lambert, M. P., Simmons, C. T., and Partington, D.: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter, Environ. Model. Softw., 41, 163–175, https://doi.org/10.1016/j.envsoft.2012.11.009, 2013.
Longobardi, A. and Villani, P.: Baseflow index characterization in typical temperate to dry climates: Conceptual analysis and simulation experiment to assess the relative role of climate forcing features and catchment geological settings, Hydrol. Res., 54, 136–148, https://doi.org/10.2166/nh.2023.026, 2023.
Lyne, V. and Hollick, M.: Stochastic time-variable rainfall–runoff modelling, in: Institute of Engineers Australia National Conference, Perth, Australia, 379–387, https://www.researchgate.net/publication/272491803 (last access: 8 October 2024), 1979.
Marçais, J., Gauvain, A., Labasque, T., Abbott, B. W., Pinay, G., Aquilina, L., Chabaux, F., Viville, D., and de Dreuzy, J. R.: Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers, Sci. Total Environ., 636, 260–272, https://doi.org/10.1016/j.scitotenv.2018.04.196, 2018.
Mau, D. P. and Winter, T. C.: Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA, Groundwater, 35, 291–304, https://doi.org/10.1111/j.1745-6584.1997.tb00086.x, 1997.
Mazvimavi, D., Meijerink, A. M. J., and Stein, A.: Prediction of base flows from basin characteristics: A case study from Zimbabwe, Hydrol. Sci. J., 49, 703–715, https://doi.org/10.1623/hysj.49.4.703.54428, 2004.
Mehaiguene, M., Meddi, M., Longobardi, A., and Toumi, S.: Low flows quantification and regionalization in North West Algeria, J. Arid Environ., 87, 67–76, https://doi.org/10.1016/j.jaridenv.2012.07.014, 2012.
Merten, G. H. and Minella, J. P. G.: Impact on sediment yield due to intensification of tobacco production in a catchment in southern Brazil, Sediment Budgets, 2, 292, 239–244, https://doi.org/10.1590/S0103-84782006000200050, 2005.
Miller, M. P., Buto, S. G., Susong, D. D., and Rumsey, C. A.: The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin, Water Resour. Res., 52, 3547–3562, https://doi.org/10.1002/2015wr017963, 2016.
Minea, I.: Streamflow–base flow ratio in a lowland area of north-eastern Romania, Water Resour., 44, 579–585, https://doi.org/10.1134/S0097807817040121, 2017.
Minella, J. P. G., Merten, G. H., Schlesner, A., Bernardi, F., de Barros, C. A. P., Tiecher, T., Ramon, R., Evrard, O., dos Santos, D. R., Reichert, J. M., and Tassi, R.: Combining sediment source tracing techniques with traditional monitoring: The “Arvorezinha catchment” experience, Hydrol. Process., 36, e14665, https://doi.org/10.1002/hyp.14665, 2022.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, Trans. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mugo, J. M. and Sharma, T. C.: Application of a conceptual method for separating runoff components in daily hydrographs in Kimakia forest catchments, Kenya, Hydrol. Process., 13, 2931–2939, https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2931::AID-HYP838>3.0.CO;2-N, 1999.
Murphy, R., Graszkiewicz, Z., Hill, P., Neal, B., and Nathan, R.: Australian rainfall and runoff. Project 7: Baseflow for catchment simulation, Stage 2 report, No. P7/S2/017, Engineers Australia, Canberra, Australia, 205 pp., ISBN 978-0-85825-916-4, 2011.
Murray, B. R., Zeppel, M. J. B., Hose, G. C., and Eamus, D.: Groundwater-dependent ecosystems in Australia: It's more than just water for rivers, Ecol. Manage. Restor., 4, 110–113, https://doi.org/10.1046/j.1442-8903.2003.00144.x, 2003.
Mwakalila, S., Feyen, J., and Wyseure, G.: The influence of physical catchment properties on baseflow in semi-arid environments, J. Arid Environ., 52, 245–258, https://doi.org/10.1006/jare.2001.0947, 2002.
Narimani, R., Jun, C., Nezhad, S. M., Bateni, S. M., Lee, J., and Baik, J.: The role of climate conditions and groundwater on baseflow separation in Urmia Lake Basin, Iran, J. Hydrol. Reg. Stud., 47, 101383, https://doi.org/10.1016/j.ejrh.2023.101383, 2023.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nathan, R. J. and McMahon, T. A.: Evaluation of automated techniques for baseflow and recession analyses, Water Resour. Res., 26, 1465–1473, https://doi.org/10.1029/WR026i007p01465, 1990.
Nathan, R. J. and Weinmann, P. E.: Low flow atlas for Victorian streams, Department of Conservation and Natural Resources, Melbourne, Australia, 43 pp., ISBN 0730632261, 1993.
Okello, A. M. L. S., Uhlenbrook, S., Jewitt, G. P. W., Masih, I., Riddell, E. S., and van der Zaag, P.: Hydrograph separation using tracers and digital filters to quantify runoff components in a semi-arid mesoscale catchment, Hydrol. Process., 32, 1334–1350, https://doi.org/10.1002/hyp.11491, 2018.
Partington, D., Brunner, P., Simmons, C. T., Therrien, R., Werner, A. D., Dandy, G. C., and Maier, H. R.: A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models, Environ. Model. Softw., 26, 886–898, https://doi.org/10.1016/j.envsoft.2011.02.007, 2011.
Ramon, R.: Kinetic energy measurement of rainfall and defining a pluvial index to estimate erosivity in Arvorezinha, RS, MSc thesis, Centro de Ciências Rurais, UFSM, Santa Maria, Brazil, 87 pp., http://repositorio.ufsm.br/handle/1/11344 (last access: 10 October 2024, regional access restriction), 2017.
Ramon, R., Minella, J. P. G., Merten, G. H., de Barros, C. A. P., and Canale, T.: Kinetic energy estimation by rainfall intensity and its usefulness in predicting hydrosedimentological variables in a small rural catchment in southern Brazil, Catena, 148, 176–184, https://doi.org/10.1016/j.catena.2016.07.015, 2017.
Rodhe, A.: Chapter 12 – Snowmelt-Dominated Systems, in: Isotope Tracers in Catchment Hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier, 391–433, https://doi.org/10.1016/B978-0-444-81546-0.50019-7, 1998.
Santarosa, L. V., Gastmans, D., Gilmore, T. E., Boll, J., Betancur, S. B., and Gonçalves, V. F. M.: Baseflow and water resilience variability in two water management units in southeastern Brazil, Int. J. River Basin Manage., 21, 387–400, https://doi.org/10.1080/15715124.2021.2002346, 2023.
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., and Cunha, T. J. F.: Brazilian soil classification system, 5th edn., Brasília, DF, Brazil, Embrapa, https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094001/brazilian-soil-classification-system, last access: January 2025.
Scanlon, T. M., Raffensperger, J. P., and Hornberger, G. M.: Modeling transport of dissolved silica in a forested headwater catchment: Implications for defining the hydrochemical response of observed flow pathways, Water Resour. Res., 37, 1071–1082, https://doi.org/10.1029/2000wr900278, 2001.
Shao, G. W., Zhang, D. R., Guan, Y. Q., Sadat, M. A., and Huang, F.: Application of different separation methods to investigate the baseflow characteristics of a semi-arid sandy area, northwestern China, Water, 12, 20434, https://doi.org/10.3390/w12020434, 2020.
Silva, C. C., Minella, J. P. G., Schlesner, A., Merten, G. H., de Barros, C. A. P., Tassi, R., and Dambroz, A. P. B.: Unpaved road conservation planning at the catchment scale, Environ. Monit. Assess., 193, https://doi.org/10.1007/s10661-021-09398-z, 2021.
SKM and CSIRO: Methods for estimating groundwater discharge to streams – Summary of field trials, Summary report for the Australian Government, Water for the Future – Water Smart Australia Program, 67 pp., 2012.
Sloto, R. A. and Crouse, M. Y.: HYSEP: A computer program for streamflow hydrograph separation and analysis, U. S. Geological Survey Water-Resources Investigations Report 96–4040, 46 pp., https://doi.org/10.3133/wri964040, 1996.
Stewart, M. K.: Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand, Hydrol. Earth Syst. Sci., 19, 2587–2603, https://doi.org/10.5194/hess-19-2587-2015, 2015.
Stewart, M. K., Mehlhorn, J., and Elliott, S.: Hydrometric and natural tracer (oxygen-18, silica, tritium and sulphur hexafluoride) evidence for a dominant groundwater contribution to Pukemanga Stream, New Zealand, Hydrol. Process., 21, 3340–3356, https://doi.org/10.1002/hyp.6557, 2007.
Su, C. H., Costelloe, J. F., Peterson, T. J., and Western, A. W.: On the structural limitations of recursive digital filters for base flow estimation, Water Resour. Res., 52, 4745–4764, https://doi.org/10.1002/2015WR018067, 2016a.
Su, C. H., Peterson, T. J., Costelloe, J. F., and Western, A. W.: A synthetic study to evaluate the utility of hydrological signatures for calibrating a base flow separation filter, Water Resour. Res., 52, 6526–6540, https://doi.org/10.1002/2015wr018177, 2016b.
Sun, Y. W., Xu, C. D., Ma, M. W., Liu, X. M., Liu, L., and Yu, F. R.: Annual, seasonal, and monthly baseflow trend in an arid area in Loss Plateau, China, Water Supply, 23, 4855–4875, https://doi.org/10.2166/ws.2023.322, 2023.
Tallaksen, L. M.: A review of baseflow recession analysis, J. Hydrol., 165, 349–370, https://doi.org/10.1016/0022-1694(95)92779-D, 1995.
Tan, S. B. K., Lo, E. Y.-M., Shuy, E. B., Chua, L. H., and Lim, W. H.: Hydrograph separation and development of empirical relationships using single-parameter digital filters, J. Hydrol. Eng., 14, 271–279, https://doi.org/10.1061/(ASCE)1084-0699(2009)14:3(271), 2009a.
Tan, S. B. K., Lo, E. Y. M., Shuy, E. B., Chua, L. H. C., and Lim, W. H.: Generation of total runoff hydrographs using a method derived from a digital filter algorithm, J. Hydrol. Eng., 14, 101–106, https://doi.org/10.1061/(ASCE)1084-0699(2009)14:1(101), 2009b.
Tan, X., Liu, B., and Tan, X.: Global changes in baseflow under the impacts of changing climate and vegetation, Water Resour. Res., 56, e2020WR027349, https://doi.org/10.1029/2020WR027349, 2020.
Tiecher, T., Caner, L., Minella, J. P. G., Evrard, O., Mondamert, L., Labanowski, J., and Rheinheimer, D. D.: Tracing sediment sources using mid-infrared spectroscopy in Arvorezinha catchment, southern Brazil, Land Degrad. Dev., 28, 1603–1614, https://doi.org/10.1002/ldr.2690, 2017.
Tiecher, T., Moura-Bueno, J. M., Caner, L., Minella, J. P. G., Evrard, O., Ramon, R., Naibo, G., de Barros, C. A. P., Silva, Y. J. A. B., Amorim, F. F., and Rheinheimer, D. S.: Improving the quantification of sediment source contributions using different mathematical models and spectral preprocessing techniques for individual or combined spectra of ultraviolet-visible, near- and middle-infrared spectroscopy, Geoderma, 384, 114815, https://doi.org/10.1016/j.geoderma.2020.114815, 2021.
Uzeika, T., Merten, G. H., Minella, J. P. G., and Moro, M.: Use of the SWAT model for hydro-sedimentologic simulation in a small rural watershed, Rev. Bras. Cienc. Solo, 36, 557–565, https://doi.org/10.1590/S0100-06832012000200025, 2012.
Vasconcelos, V. V., Martins Junior, P. P., and Hadad, R. M.: Estimation of flow components by recursive filters: Case study of Paracatu River Basin (SF-7), Brazil, Geol. USP Ser. Cient., 13, 3–24, https://doi.org/10.5327/Z1519-874X2013000100001, 2013.
Vogel, R. M. and Kroll, C. N.: Estimation of baseflow recession constants, Water Resour. Manage., 10, 303–320, https://doi.org/10.1007/BF00508898, 1996.
Walker, G.: Risk of stream loss from changing irrigation, climate and groundwater extraction on the southern riverine plain of the Murray–Darling Basin in south-eastern Australia, Australas, J. Water Resour., 27, 289–310, https://doi.org/10.1080/13241583.2023.2181292, 2023.
Wels, C., Cornett, R. J., and Lazerte, B. D.: Hydrograph separation: A comparison of geochemical and isotopic tracers, J. Hydrol., 122,, 253–274, https://doi.org/10.1016/0022-1694(91)90181-G, 1991.
Wu, J., Miao, C., Duan, Q., Lei, X., Li, X., and Li, H.: Dynamics and attributions of baseflow in the semiarid Loess Plateau, J. Geophys. Res.-Atmos., 124, 3684–3701, https://doi.org/10.1029/2018JD029775, 2019.
Xie, J. X., Liu, X. M., Wang, K. W., Yang, T. T., Liang, K., and Liu, C. M.: Evaluation of typical methods for baseflow separation in the contiguous United States, J. Hydrol., 583, 124628, https://doi.org/10.1016/j.jhydrol.2020.124628, 2020.
Yang, W., Xiao, C., Zhang, Z., and Liang, X.: Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?, Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021, 2021.
Yao, L., Sankarasubramanian, A., and Wang, D.: Climatic and landscape controls on long-term baseflow, Water Resour. Res., 57, e2020WR029284, https://doi.org/10.1029/2020WR029284, 2021.
Zhang, J. L., Zhang, Y. Q., Song, J. X., and Cheng, L.: Evaluating relative merits of four baseflow separation methods in Eastern Australia, J. Hydrol., 549, 252–263, https://doi.org/10.1016/j.jhydrol.2017.04.004, 2017.
Zhang, R. G., Li, Q., Chow, T. L., Li, S., and Danielescu, S.: Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method, Hydrol. Process., 27, 2659–2665, https://doi.org/10.1002/hyp.9417, 2013.
Short summary
This study improves how we measure the slow, steady flow of water in rivers, known as baseflow, which is vital for ecosystems and water supply. By combining chemical tracers with data-filtering techniques, the research offers a more accurate way to separate baseflow from fast runoff. This approach helps scientists better track water movement and manage water resources, especially during dry seasons and in changing climates.
This study improves how we measure the slow, steady flow of water in rivers, known as baseflow,...