Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6285-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6285-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating precipitation-induced karst-stream interactions using a coupled Darcy–Brinkman–Stokes model
Fuyun Huang
School of Geology and Mining Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
Yuan Gao
CORRESPONDING AUTHOR
School of Geology and Mining Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
Zizhao Zhang
CORRESPONDING AUTHOR
School of Geology and Mining Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
Xiaonong Hu
School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
Xiaoguang Wang
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China
Tianfu Yongxing Laboratory, Chengdu, Sichuan 610059, China
Shengyan Pu
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
Related authors
No articles found.
Chuan-An Xia, Jiayun Li, Bill X. Hu, Alberto Guadagnini, and Monica Riva
EGUsphere, https://doi.org/10.5194/egusphere-2025-5320, https://doi.org/10.5194/egusphere-2025-5320, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Pumping wells may not be officially registered or documented. We develop a new framework to jointly estimate spatially variable conductivity and identify unknown pumping well locations and rates. Our results support the ability of the new approach to accurately estimate conductivity and identify well location and rates under diverse configurations, attaining a quality of performance similar to its traditional counterpart while computational time is reduced by nearly an order of magnitude.
Zhiyi Zhang, Xinyi Xu, Hideki Shimada, Wenfeng Wang, Xiaoyong Tong, Yuan Gao, and Weiming Guan
EGUsphere, https://doi.org/10.5194/egusphere-2025-885, https://doi.org/10.5194/egusphere-2025-885, 2025
Preprint archived
Short summary
Short summary
Mineral dust particles (MDPs) enhance glacier melting by increasing energy absorption, leading to a 10 %–40 % increase in meltwater production. Our research, through experiments and theoretical work, demonstrates that particle number, surface albedo, and irradiance have linear effects on melting, while particle diameter affects it exponentially. These insights further refine the prediction of glacier melting rates.
Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 1689–1709, https://doi.org/10.5194/hess-25-1689-2021, https://doi.org/10.5194/hess-25-1689-2021, 2021
Short summary
Short summary
Our study shows that (i) monitoring wells installed with packers provide the (overall) best conductivity estimates; (ii) conductivity estimates anchored on information from partially and fully screened wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve conductivity estimates when a simplified flow model is adopted; and (iv) when compared to the MC-based EnKF, the MEs-based EnKF can efficiently and accurately estimate conductivity and head fields.
Cited articles
Assouline, S. and Or, D.: Conceptual and parametric representation of soil hydraulic properties: A review, Vadose Zone J., 12, https://doi.org/10.2136/vzj2013.07.0121, 2013.
Bailly-Comte, V., Martin, J. B., Jourde, H., Screaton, E. J., Pistre, S., and Langston, A.: Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams, J. Hydrol., 386, 55–66, https://doi.org/10.1016/j.jhydrol.2010.03.005, 2010.
Barenblatt, G. I., Zheltov, I. P., and Kochina, I. N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24, 1286–1303, https://doi.org/10.1016/0021-8928(60)90107-6, 1960.
Bianchini, S., Confuorto, P., Intrieri, E., Sbarra, P., Di Martire, D., Calcaterra, D., and Fanti, R.: Machine learning for sinkhole risk mapping in Guidonia-Bagni di Tivoli plain (Rome), Italy, Geocarto International, 37, 16687–16715, 2022.
Bonacci, O.: Surface Waters and Groundwater in Karst, in: Karst Aquifers – Characterization and Engineering, edited by: Stevanović, Z., Springer International Publishing Switzerland, 153–155, https://doi.org/10.1007/978-3-319-12850-4_5, 2015.
Brooks, R. and Corey, A.: Hydraulic properties of porous media, Hydro Paper 3, Colorado State University, 27 pp., https://doi.org/10.13031/2013.40684, 1964.
Carrillo, F. J., Bourg, I. C., and Soulaine, C.: Multiphase flow modeling in multiscale porous media: An open-source micro-continuum approach, J. Computat. Phys.: X, 8, 100073, https://doi.org/10.1016/j.jcpx.2020.100073, 2020.
Chang, Y., Wu, J., and Liu, L.: Effects of the conduit network on the spring hydrograph of the karst aquifer, J. Hydrol., 527, 517–530, 2015.
Chang, Y., Wu, J., Jiang, G., Liu, L., Reimann, T., and Sauter, M.: Modelling spring discharge and solute transport in conduits by coupling CFPv2 to an epikarst reservoir for a karst aquifer, J. Hydrol., 569, 587–599, https://doi.org/10.1016/j.jhydrol.2018.11.075, 2019.
Dam, J. and Feddes, R. A.: Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation, J. Hydrol., 233, 72–85, 2000.
Dvory, N. Z., Kuznetsov, M., Livshitz, Y., Gasser, G., Pankratov, I., Lev, O., Adar, E., and Yakirevich, A.: Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator, Water Res., 128, 157–170, https://doi.org/10.1016/j.watres.2017.10.044, 2018.
Fiorese, G. D., Balacco, G., Bruno, G., and Nikolaidis, N.: Hydrogeological modelling of a coastal karst aquifer using an integrated SWAT-MODFLOW approach, Environ. Model. Softw., 183, 106249, https://doi.org/10.1016/j.envsoft.2024.106249, 2025.
Ford, D. and Williams, P.: Karst hydrogeology and geomorphology, John Wiley & Sons Ltd., West Sussex, England, https://doi.org/10.1002/9781118684986, 2007.
Gallegos, J. J., Hu, B. X., and Davis, H.: Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP, Hydrgeol. J., 21, 1749–1760, 2013.
Gao, Y., Libera, D., Kibler, K., Wang, D., and Chang, N. B.: Evaluating the performance of BAM-based blanket filter on nitrate reduction in a karst spring, J. Hydrol., 591, 125491, https://doi.org/10.1016/j.jhydrol.2020.125491, 2020.
Gao, Y., Yao, L., Chang, N.-B., and Wang, D.: Diagnosis toward predicting mean annual runoff in ungauged basins, Hydrol. Earth Syst. Sci., 25, 945–956, https://doi.org/10.5194/hess-25-945-2021, 2021.
Gao, Y., Huang, F., and Wang, D.: Evaluating physical controls on conduit flow contribution to spring discharge, J. Hydrol., 632, 130754, https://doi.org/10.1016/j.jhydrol.2024.130754, 2024.
Giese, M., Reimann, T., Bailly-Comte, V., Maréchal, J.-C., Sauter, M., and Geyer, T.: Turbulent and laminar flow in karst conduits under unsteady flow conditions: interpretation of pumping tests by discrete conduit-continuum modeling, Water Resour. Res., 54, 1918–1933, https://doi.org/10.1002/2017WR020658, 2018.
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., and Veni, G.: Global distribution of carbonate rocks and karst water resources, Hydrgeol. J., 28, 1661–1677, 2020.
Guo, F. and Jiang, G.: Hydro-ecological processes of hyporheic zone in a karst spring-fed pool: Effects of groundwater decline and river backflow, J. Hydrol., 587, 124987, https://doi.org/10.1016/j.jhydrol.2020.124987, 2020.
Halihana, T., Sharp, J., and Mace, R. E.: Interpreting Flow Using Permeability at Multiple Scales, KIP Articles, 2908, https://digitalcommons.usf.edu/kip_articles/2908 (last access: 13 November 2025), 1999.
Hirt, C. W. and Nichols, B. D.: Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201–225, 1981.
Huang, F., Gao, Y., Hu, X., Wang, X., and Pu, S.: Influence of precipitation infiltration recharge on hydrological processes of the karst aquifer system and adjacent river, J. Hydrol., 639, 131656, https://doi.org/10.1016/j.jhydrol.2024.131656, 2024.
Kavousi, A., Reimann, T., Liedl, R., and Raeisi, E.: Karst aquifer characterization by inverse application of MODFLOW-2005 CFPv2 discrete-continuum flow and transport model, J. Hydrol., 587, 124922, https://doi.org/10.1016/j.jhydrol.2020.124922, 2020.
Kuang, X. and Jiao, J. J.: A new model for predicting relative nonwetting phase permeability from soil water retention curves, Water Resour. Res., 47, W08520, https://doi.org/10.1029/2011WR010728, 2011.
Kuniansky, E. L.: Simulating groundwater flow in karst aquifers with distributed parameter models – Comparison of porous-equivalent media and hybrid flow approaches, U. S. Geological Survey Scientific Investigations Report 2016–5116, 14 pp., https://doi.org/10.3133/sir20165116, 2016.
Lee, E. and Krothe, N.: A four-component mixing model for water in a karst terrain in south-central Indiana, USA, Using solute concentration and stable isotopes as tracers, Chem. Geol., 179, 129–143, 2001.
Leij, F. J., Alves, W. J., van Genuchten, M. Th., and Williams, J. R.: Unsaturated Soil Hydraulic Database, UNSODA 1.0 User's Manual, Report EPA/600/R-96/095, US Environmental Protection Agency, Ada, OK, USA, 1996.
Li, Y. X., Shu, L. C., Wu, P. P., Zou, Z., Lu, C. P., Liu, B., Niu, S. Y., and Yin, X. R.: Influence of the karst matrix hydraulic conductivity and specific yield on the estimation accuracy of karstic water storage variation, J. Hydrol., 626, 130186, https://doi.org/10.1016/j.jhydrol.2023.130186, 2023.
Li, Z., Xu, X., Liu, M., Li, X., Zhang, R., Wang, K., and Xu, C.: State-space prediction of spring discharge in a karst catchment in Southwest China, J. Hydrol., 549, 264–276, https://doi.org/10.1016/j.jhydrol.2017.04.001, 2017.
Longenecker, J., Bechtel, T., Chen, Z., Goldscheider, N., Liesch, T., and Walter, R.: Correlating global precipitation measurement satellite data with karst spring hydrographs for rapid catchment delineation, Geophys. Res. Lett., 44, 4926–4932, https://doi.org/10.1002/2017gl073790, 2017.
Lu, S.-F., Wang, Y.-X., Ma, M.-Y., and Xu, L.: Water seepage characteristics in porous media with various conduits: Insights from a multi-scale Darcy–Brinkman–Stokes approach, Computers and Geotechnics, 157, 105317, https://doi.org/10.1016/j.compgeo.2023.105317, 2023.
Mahler, B. J., Jiang, Y., Pu, J., and Martin, J. B.: Editorial: advances in hydrology and the water environment in the karst critical zone under the impacts of climate change and anthropogenic activities, J. Hydrol., 595, 125982, https://doi.org/10.1016/j.jhydrol.2021.125982, 2021.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nillama, L. B. A., Yang, J., and Yang, L.: An explicit stabilised finite element method for Navier–Stokes–Brinkman equations, J. Comput. Phys., 457, 111033, https://doi.org/10.1016/j.jcp.2022.111033, 2022.
Okello, A. M. L. S., Uhlenbrook, S., Jewitt, G. P. W., Masih, I., Riddell, E. S., and Pieter, V. D. Z.: Hydrograph separation using tracers and digital filters to quantify runoff components in a semi-arid mesoscale catchment, Hydrol. Process., 32, 1334–1350, 2018.
Pardo-Igúzquiza, E., Dowd, P., Bosch, A. P., Luque-Espinar, J. A., Heredia, J., and Durán-Valsero, J. J.: A parsimonious distributed model for simulating transient water flow in a high-relief karst aquifer, Hydrogeol. J., https://doi.org/10.1007/s10040-018-1825-z, 2018.
Parker, J. C., Lenhard, R. J., and Kuppusamy, T.: A parametric model for constitutive properties governing multiphase flow in porous media, Water Resour. Res., 23, 618–624, 1987.
Qiu, H., Niu, J., and Hu, B. X.: Quantifying the integrated water and carbon cycle in a data-limited karst basin using a process-based hydrologic model, Environ. Earth Sci., 78, 328, https://doi.org/10.1007/s12665-019-8324-y, 2019.
Reimann, T., Giese, M., Geyer, T., Liedl, R., Maréchal, J. C., and Shoemaker, W. B.: Representation of water abstraction from a karst conduit with numerical discrete-continuum models, Hydrol. Earth Syst. Sci., 18, 227–241, https://doi.org/10.5194/hess-18-227-2014, 2014.
Rusche, H.: Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, PhD thesis, Imperial College, London, http://hdl.handle.net/10044/1/8110 (last access: 20 October 2025), 2002.
Shirafkan, M., Mohammadi, Z., Kavousi, A., Sivelle, V., Labat, D., and Reimann, T.: Toward the estimation of the transfer coefficient in karst systems: Using baseflow recession coefficient under matrix-restrained flow regime, J. Hydrol., 620, 129441, https://doi.org/10.1016/j.jhydrol.2023.129441, 2023.
Shoemaker, W. B., Kuniansky, E. L., Birk, S., Bauer, S., and Swain, E. D.: Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005, US Department of the Interior, US Geological Survey, Reston, VA, USA, 2008.
Sivelle, V., Jourde, H., Bittner, D., Mazzilli, N., and Tramblay, Y.: Assessment of the relative impacts of climate changes and anthropogenic forcing on spring discharge of a Mediterranean karst system, J. Hydrol., 598, 126396, https://doi.org/10.1016/j.jhydrol.2021.126396, 2021.
Soulaine, C.: Micro-continuum modeling: An hybrid-scale approach for solving coupled processes in porous media, Water Resour. Res., 60, e2023WR035908, https://doi.org/10.1029/2023WR035908, 2024.
Soulaine, C. and Tchelepi, H. A.: Micro-continuum Approach for Pore-Scale Simulation of Subsurface Processes, Transp. Porous. Med., 113, 431–456, https://doi.org/10.1007/s11242-016-0701-3, 2016.
Springer, D. S., Cullen, S. J., and Everett, L. G.: Laboratory studies on air permeability, in: Handbook of Vadose Zone Characterization & Monitoring, edited by: Wilson, L. G., Everett, L. G., and Cullen, S. J., CRC Press, Boca Raton, FL, 217–247, https://doi.org/10.1201/9780203752524, 1995.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vauclin, M., Khanji, D., and Vachaud, G.: Experimental and numerical study of a transient, two‐dimensional unsaturated-saturated water table recharge problem, Water Resour. Res., 15(5), 1089-1101, https://doi.org/10.1029/WR015i005p01089, 1979.
Warrick, A. W., Lomen, D. O., and Yates, S. R.: A Generalized Solution to Infiltration, Soil Sci. Soc. Am. J., 49(1), 34-38, https://doi.org/10.2136/sssaj1985.03615995004900010006x, 1985.
Worthington, S. R.: Karst Hydrogeology of the Canadian Rocky Mountains, McMaster Univ., Hamilton, Ont., Canada, 227 pp., http://hdl.handle.net/11375/8329 (last access: 13 November 2025), 1991.
Yang, Z., Mohanty, B. P., Tong, X., Kuang, X., and Li, L.: Effects of water retention curves and permeability equations on the prediction of relative air permeability, Geophys. Res. Lett., 48, e2021GL092459, https://doi.org/10.1029/2021GL092459, 2021.
Yifru, B. A., Lee, S., Bak, S., Bae, J. H., Shin, H., and Lim, K. J.: Estimating exploitable groundwater for agricultural use under environmental flow constraints using an integrated SWAT-MODFLOW model, Agric. Water Manag., 303, 109024, https://doi.org/10.1016/j.agwat.2024.109024, 2024.
Zhai, Y., Fuhrman, D. R., and Christensen, E. D.: Numerical simulations of flow inside a stone protection layer with a modified k-ω turbulence model, Coastal Eng., 189, 104469, https://doi.org/10.1016/j.coastaleng.2024.104469, 2024.
Zhang, L., Luo, M., and Chen, Z.: Identification and estimation of solute storage and release in Karst water systems, south China, Int. J. Environ. Res. Public Health, 17, 7219, https://doi.org/10.3390/ijerph17197219, 2020.
Short summary
This study employs the Darcy-Brinkman-Stokes equations to characterize the coupled seepage process in porous media of the karst aquifer and the free flow process in karst conduit and stream. Results show that the impact of different water retention models on the interaction process is quite significant. The degree of change in water level of the stream also varies, and this change can affect the ease with which different strata media in the karst aquifer recharge the stream.
This study employs the Darcy-Brinkman-Stokes equations to characterize the coupled seepage...