Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5213-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5213-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Managed aquifer recharge and extraction effects on groundwater level and quality dynamics in a typical temperate semi-arid fissured karst system: a multi-method quantitative study
Han Cao
Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, People's Republic of China
Institute of Water Resources and Environment, Jilin University, Changchun, People's Republic of China
Jinlong Qian
Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, People's Republic of China
Institute of Water Resources and Environment, Jilin University, Changchun, People's Republic of China
Huanliang Chen
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, People's Republic of China
Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
Chunwei Liu
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, People's Republic of China
Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
Shuai Gao
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, People's Republic of China
Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
Minghui Lyu
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, People's Republic of China
Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
Weihong Dong
CORRESPONDING AUTHOR
Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, People's Republic of China
Institute of Water Resources and Environment, Jilin University, Changchun, People's Republic of China
Caiping Hu
CORRESPONDING AUTHOR
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, People's Republic of China
Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
Related authors
No articles found.
Han Li, Hang Lyu, Boyuan Pang, Xiaosi Su, Weihong Dong, Yuyu Wan, Tiejun Song, and Xiaofang Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1663, https://doi.org/10.5194/egusphere-2025-1663, 2025
Short summary
Short summary
Groundwater level dynamics under freeze-thaw conditions remain unclear. We use interpretable deep learning to simulate water table changes and identify seasonal drivers in seasonally frozen regions. During freeze-thaw, changes in soil water potential cause two-way exchange between soil water and groundwater, while rainfall, runoff, and irrigation dominate in other periods. These insights inform groundwater modeling and management in cold regions.
Cited articles
Aeschbach-Hertig, W. and Gleeson, T.: Regional strategies for the accelerating global problem of groundwater depletion, Nature Geoscience, 5, 853–861, https://doi.org/10.1038/ngeo1617, 2012.
Agbotui, P. Y., West, L. J., and Bottrell, S. H.: Characterisation of fractured carbonate aquifers using ambient borehole dilution tests, Journal of Hydrology, 589, https://doi.org/10.1016/j.jhydrol.2020.125191, 2020.
Ajjur, S. B. and Baalousha, H. M.: A review on implementing managed aquifer recharge in the Middle East and North Africa region: methods, progress and challenges, Water International, 46, 578–604, https://doi.org/10.1080/02508060.2021.1889192, 2021.
Akurugu, B. A., Obuobie, E., Yidana, S. M., Stisen, S., Seidenfaden, I. K., and Chegbeleh, L. P.: Groundwater resources assessment in the Densu Basin: A review, Journal of Hydrology: Regional Studies, 40, https://doi.org/10.1016/j.ejrh.2022.101017, 2022.
Alam, S., Borthakur, A., Ravi, S., Gebremichael, M., and Mohanty, S. K.: Managed aquifer recharge implementation criteria to achieve water sustainability, Sci. Total Environ., 768, 144992, https://doi.org/10.1016/j.scitotenv.2021.144992, 2021.
Aliouache, M. and Jourde, H.: Influence of structural properties and connectivity of initial fracture network on incipient karst genesis, Journal of Hydrology, 640, https://doi.org/10.1016/j.jhydrol.2024.131684, 2024.
Allocca, V., Manna, F., and De Vita, P.: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014.
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeology Journal, 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Ballesteros, D., Farrant, A., Nehme, C., Woods, M., Todisco, D., and Mouralis, D.: Stratigraphical influence on chalk cave development in Upper Normandy, France: implications for chalk hydrogeology, International Journal of Speleology, 49, 187–208, https://doi.org/10.5038/1827-806x.49.3.2319, 2020.
Bhering, A. P., Antunes, I. M. H. R., Marques, E. A. G., and de Paula, R. S.: Geological and hydrogeological review of a semi-arid region with conflicts to water availability (southeastern Brazil), Environmental Research, 202, https://doi.org/10.1016/j.envres.2021.111756, 2021.
Cao, H., Dong, W., Chen, H., and Wang, R.: Groundwater vulnerability assessment of typical covered karst areas in northern China based on an improved COPK method, Journal of Hydrology, 624, https://doi.org/10.1016/j.jhydrol.2023.129904, 2023.
Cao, X., Zhang, J., Meng, H., Lai, Y., and Xu, M.: Remote sensing inversion of water quality parameters in the Yellow River Delta, Ecological Indicators, 155, https://doi.org/10.1016/j.ecolind.2023.110914, 2023.
Chang, Y., Wu, J., and Liu, L.: Effects of the conduit network on the spring hydrograph of the karst aquifer, Journal of Hydrology, 527, 517–530, https://doi.org/10.1016/j.jhydrol.2015.05.006, 2015.
Craig, H.: Isotopic Variations in Meteoric Waters, Science (New York), 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Criss, R. E.: A DARCIAN MODEL FOR THE FLOW OF BIG SPRING AND THE HYDRAULIC HEAD IN THE OZARK AQUIFER, MISSOURI, USA, Acta Carsologica, 39, 379–387, 2010.
Daher, W., Pistre, S., Kneppers, A., Bakalowicz, M., and Najem, W.: Karst and artificial recharge: Theoretical and practical problems, Journal of Hydrology, 408, 189–202, https://doi.org/10.1016/j.jhydrol.2011.07.017, 2011.
Deng, X., Xing, L., Yu, M., Zhao, Z., Li, C., and Su, Q.: Characteristics of the water cycle of Jinan karst spring in northern China, Water Practice and Technology, 17, 1470–1489, https://doi.org/10.2166/wpt.2022.075, 2022.
Foley, A., Cachandt, G., Franklin, J., Willmore, F., and Atkinson, T.: Tracer tests and the structure of permeability in the Corallian limestone aquifer of northern England, UK, Hydrogeology Journal, 20, 483–498, https://doi.org/10.1007/s10040-012-0830-x, 2012.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P.: Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Gao, M., Li, X., Qian, J., Wang, Z., Hou, X., Gui, C., Bai, Z., Fu, C., Li, J., and Zuo, X.: Hydrochemical Characteristics and Controlling Factors of Shallow and Deep Groundwater in the Heilongdong Spring Basin, Northern China, Sustainability, 15, https://doi.org/10.3390/su152115447, 2023.
Gao, S., Li, C., Liu, Y., Sun, B., Zhao, Z., Lv, M., and Gang, S.: Hydrogeochemical Characteristics and Evolution Processes of Karst Groundwater Affected by Multiple Influencing Factors in a Karst Spring Basin, Eastern China, Water, 15, https://doi.org/10.3390/w15223899, 2023.
Guo, Y., Qin, D., Li, L., Sun, J., Li, F., and Huang, J.: A Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China, Water, 11, https://doi.org/10.3390/w11050947, 2019.
Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., and Wagener, T.: A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean, Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, 2015.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst water resources in a changing world: Review of hydrological modeling approaches, Reviews of Geophysics, 52, 218–242, https://doi.org/10.1002/2013rg000443, 2014.
Jiang, C., Wang, X., Pu, S., and Jourde, H.: Incipient karst generation in jointed layered carbonates: Insights from three-dimensional hydro-chemical simulations, Journal of Hydrology, 610, https://doi.org/10.1016/j.jhydrol.2022.127831, 2022.
Jiang, X., Lei, M., and Zhao, H.: Review of the advanced monitoring technology of groundwater–air pressure (enclosed potentiometric) for karst collapse studies, Environmental Earth Sciences, 78, https://doi.org/10.1007/s12665-019-8716-z, 2019.
Jourde, H. and Wang, X.: Advances, challenges and perspective in modelling the functioning of karst systems: a review, Environmental Earth Sciences, 82, https://doi.org/10.1007/s12665-023-11034-7, 2023.
Kang, F., Jin, M., and Qin, P.: Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China, Hydrogeology Journal, 19, 851–863, https://doi.org/10.1007/s10040-011-0725-2, 2011.
Kidmose, J., Nilsson, B., Klem, N. K., Pedersen, P. G., Henriksen, H. J., and Sonnenborg, T. O.: Can effective porosity be used to estimate near-well protection zones in fractured chalk?, Hydrogeology Journal, 31, 2197–2212, https://doi.org/10.1007/s10040-023-02743-1, 2023.
Knöll, P. and Scheytt, T.: A tracer test to determine a hydraulic connection between the Lauchert and Danube karst catchments (Swabian Alb, Germany), Hydrogeology Journal, 26, 429–437, https://doi.org/10.1007/s10040-017-1678-x, 2017.
Li, J., Wang, W., and Li, W.: Total Dissolved Solids Risk Assessment and Optimisation Scheme of Managed Aquifer Recharge Projects in a Karst Area of Northern China, Water, 15, https://doi.org/10.3390/w15223930, 2023.
Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., Zhou, Y., and Chen, Z.: The Scale Effect of Double-Ring Infiltration and Soil Infiltration Zoning in a Semi-Arid Steppe, Water, 11, https://doi.org/10.3390/w11071457, 2019.
Li, M., Xie, Y., Dong, Y., Wang, L., and Zhang, Z.: Review: Recent progress on groundwater recharge research in arid and semiarid areas of China, Hydrogeology Journal, 32, 9–30, https://doi.org/10.1007/s10040-023-02656-z, 2023.
Li, T., Zhang, J., Gao, Y., Cao, X., Liu, H., Zhang, P., Yang, J., and Mastrocicco, M.: Hydrological Characteristics of Ordovician Karst Top in a Deep Region and Evaluation of Its Threat to Coal Mining: A Case Study for the Weibei Coalfield in Shaanxi Province, China, Geofluids, 2020, 1–17, https://doi.org/10.1155/2020/7629695, 2020.
Liang, Y., Gao, X., Zhao, C., Tang, C., Shen, H., Wang, Z., and Wang, Y.: Review: Characterization, evolution, and environmental issues of karst water systems in Northern China, Hydrogeology Journal, 26, 1371–1385, https://doi.org/10.1007/s10040-018-1792-4, 2018.
Liu, C., Zhang, G., and Wang, W.: Characteristics of an open karst water system in Shandong Province, China, Environmental Earth Sciences, 80, https://doi.org/10.1007/s12665-021-09465-1, 2021.
Liu, Y., Wang, M., Webber, M., Zhou, C., and Zhang, W.: Alternative water supply solutions: China's South-to-North-water-diversion in Jinan, J. Environ. Manag., 276, 111337, https://doi.org/10.1016/j.jenvman.2020.111337, 2020.
Lorenzi, V., Banzato, F., Barberio, M. D., Goeppert, N., Goldscheider, N., Gori, F., Lacchini, A., Manetta, M., Medici, G., Rusi, S., and Petitta, M.: Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy), Heliyon, 10, e24663, https://doi.org/10.1016/j.heliyon.2024.e24663, 2024.
Luo, Q., Yang, Y., Qian, J., Wang, X., Chang, X., Ma, L., Li, F., and Wu, J.: Spring protection and sustainable management of groundwater resources in a spring field, Journal of Hydrology, 582, https://doi.org/10.1016/j.jhydrol.2019.124498, 2020.
Medici, G. and West, L. J.: Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction, Environ. Sci. Pollut. Res. Int., 28, 43050–43063, https://doi.org/10.1007/s11356-021-14840-3, 2021.
Medici, G., West, L. J., Chapman, P. J., and Banwart, S. A.: Prediction of contaminant transport in fractured carbonate aquifer types: a case study of the Permian Magnesian Limestone Group (NE England, UK), Environ. Sci. Pollut. Res. Int., 26, 24863–24884, https://doi.org/10.1007/s11356-019-05525-z, 2019.
Medici, G., Smeraglia, L., Torabi, A., and Botter, C.: Review of Modeling Approaches to Groundwater Flow in Deformed Carbonate Aquifers, Ground Water, 59, 334–351, https://doi.org/10.1111/gwat.13069, 2021.
Medici, G., Munn, J. D., and Parker, B. L.: Delineating aquitard characteristics within a Silurian dolostone aquifer using high-density hydraulic head and fracture datasets, Hydrogeology Journal, 32, 1663–1691, https://doi.org/10.1007/s10040-024-02824-9, 2024.
Mudarra, M., Hartmann, A., and Andreo, B.: Combining Experimental Methods and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers, Water Resources Research, 55, 1384–1404, https://doi.org/10.1029/2017wr021819, 2019.
Niu, S., Shu, L., Li, H., Xiang, H., Wang, X., Opoku, P. A., and Li, Y.: Identification of Preferential Runoff Belts in Jinan Spring Basin Based on Hydrological Time-Series Correlation, Water, 13, https://doi.org/10.3390/w13223255, 2021.
Ostad-Ali-Askari, K., and Shayannejad, M.: Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer, Environment, Development and Sustainability, 23, 15943–15959, https://doi.org/10.1007/s10668-021-01323-1, 2021.
Pagnozzi, M., Coletta, G., Leone, G., Catani, V., Esposito, L., and Fiorillo, F.: A Steady-State Model to Simulate Groundwater Flow in Unconfined Aquifer, Applied Sciences, 10, https://doi.org/10.3390/app10082708, 2020.
Perrin, J., Parker, B. L., and Cherry, J. A.: Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water, Journal of Hydrology, 400, 396–410, https://doi.org/10.1016/j.jhydrol.2011.01.055, 2011.
Ren, S., Gragg, S., Zhang, Y., Carr, B. J., and Yao, G.: Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming, Journal of Hydrology, 561, 780–795, https://doi.org/10.1016/j.jhydrol.2018.04.048, 2018.
Ringleb, J., Sallwey, J., and Stefan, C.: Assessment of Managed Aquifer Recharge through Modeling – A Review, Water, 8, https://doi.org/10.3390/w8120579, 2016.
Scanlon, B. R., Mace, R. E., Barrett, M. E., and Smith, B.: Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA, Journal of Hydrology, 276, 137–158, https://doi.org/10.1016/s0022-1694(03)00064-7, 2003.
Sherif, M., Sefelnasr, A., Al Rashed, M., Alshamsi, D., Zaidi, F. K., Alghafli, K., Baig, F., Al-Turbak, A., Alfaifi, H., Loni, O. A., Ahamed, M. B., and Ebraheem, A. A.: A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates, Water, 15, https://doi.org/10.3390/w15040742, 2023.
Standen, K., Costa, L. R. D., and Monteiro, J.-P.: In-Channel Managed Aquifer Recharge: A Review of Current Development Worldwide and Future Potential in Europe, Water, 12, https://doi.org/10.3390/w12113099, 2020.
Wang, G.-F., Wu, Y.-X., Lu, L., Li, G., and Shen, J. S.: Investigation of the geological and hydrogeological environment with relation to metro system construction in Jinan, China, Bulletin of Engineering Geology and the Environment, 78, 1005–1024, https://doi.org/10.1007/s10064-017-1140-2, 2017.
Wang, W., Fan, Y., Li, K., Wang, X., and Kang, J.: Challenges of Spring Protection and Groundwater Development in Urban Subway Construction: A Case Study in the Jinan Karst Area, China, Water, 14, https://doi.org/10.3390/w14091521, 2022.
Worthington, S. R. H., Foley, A. E., and Soley, R. W. N.: Transient characteristics of effective porosity and specific yield in bedrock aquifers, Journal of Hydrology, 578, https://doi.org/10.1016/j.jhydrol.2019.124129, 2019.
Xanke, J., Liesch, T., Goeppert, N., Klinger, J., Gassen, N., and Goldscheider, N.: Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan, Hydrogeology Journal, 25, 1795–1809, https://doi.org/10.1007/s10040-017-1586-0, 2017.
Xi, H., Zhang, L., Feng, Q., Si, J., Chang, Z., Yu, T., and Li, J.: The spatial heterogeneity of riverbed saturated permeability coefficient in the lower reaches of the Heihe River Basin, Northwest China, Hydrological Processes, 29, 4891–4907, https://doi.org/10.1002/hyp.10544, 2015.
Yin, L., Xu, B., Cai, W., Zhou, P., and Yang, L.: Intrinsic Vulnerability Assessment of the Qingduo Karst System, Henan Province, Water, 15, https://doi.org/10.3390/w15193425, 2023.
Zafarmomen, N., Alizadeh, H., Bayat, M., Ehtiat, M., and Moradkhani, H.: Assimilation of Sentinel-Based Leaf Area Index for Modeling Surface-Ground Water Interactions in Irrigation Districts, Water Resources Research, 60, https://doi.org/10.1029/2023wr036080, 2024.
Zhang, Z. and Nemcik, J.: Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures, Journal of Hydrology, 477, 139–151, https://doi.org/10.1016/j.jhydrol.2012.11.024, 2013.
Zhang, Z. and Wang, W.: Managing aquifer recharge with multi-source water to realize sustainable management of groundwater resources in Jinan, China, Environ. Sci. Pollut. Res. Int., 28, 10872–10888, https://doi.org/10.1007/s11356-020-11353-3, 2021.
Zhang, Z., Xu, Y., Zhang, Y., and Cao, J.: Review: karst springs in Shanxi, China, Carbonates and Evaporites, 34, 1213–1240, https://doi.org/10.1007/s13146-018-0440-3, 2018.
Zheng, Q. Y., Wang, W. P., Liu, S., and Qu, S. S.: Physical clogging experiment of sand gravel infiltration with Yellow River water in the Yufuhe River channel of Jinan, China, Frontiers of Earth Science, 14, 306–314, https://doi.org/10.1007/s11707-019-0772-x, 2020.
Zhu, H., Xing, L., Meng, Q., Xing, X., Peng, Y., Li, C., Li, H., and Yang, L.: Water Recharge of Jinan Karst Springs, Shandong, China, Water, 12, https://doi.org/10.3390/w12030694, 2020.
Zimmerman, R. W. and Bodvarsson, G. S.: Hydraulic conductivity of rock fractures, Transport in Porous Media, 23, 1–30, https://doi.org/10.1007/BF00145263, 1996.
Zuber, A. and Motyka, J.: Matrix porosity as the most important parameter of fissured rocks for solute transport at large scales, Journal of Hydrology, 158, 19–46, https://doi.org/10.1016/0022-1694(94)90044-2, 1994.
Short summary
This study presents a multi-method framework assessing managed aquifer recharge (MAR) and extraction effects on groundwater dynamics in a typical temperate semi-arid fissured karst system, Jinan's Baotu Spring area. Results show MAR and extraction significantly influence karst groundwater levels and quality. The complementary techniques enhance the quantitative research accuracy and provide practical references for MAR in karst regions with similar hydrogeological conditions.
This study presents a multi-method framework assessing managed aquifer recharge (MAR) and...