Articles | Volume 29, issue 19
https://doi.org/10.5194/hess-29-5031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5031-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Informativeness of teleconnections in frequency analysis of rainfall extremes
Andrea Magnini
CORRESPONDING AUTHOR
Department of civil, environmental, chemical and materials engineering (DICAM), University of Bologna, Bologna, Italy
Valentina Pavan
ARPAE-SIMC Emilia Romagna, Bologna, Italy
Attilio Castellarin
Department of civil, environmental, chemical and materials engineering (DICAM), University of Bologna, Bologna, Italy
Related authors
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Simone Persiano, Alessio Pugliese, Alberto Aloe, Jon Olav Skøien, Attilio Castellarin, and Alberto Pistocchi
Earth Syst. Sci. Data, 14, 4435–4443, https://doi.org/10.5194/essd-14-4435-2022, https://doi.org/10.5194/essd-14-4435-2022, 2022
Short summary
Short summary
For about 24000 river basins across Europe, this study provides a continuous representation of the streamflow regime in terms of empirical flow–duration curves (FDCs), which are key signatures of the hydrological behaviour of a catchment and are widely used for supporting decisions on water resource management as well as for assessing hydrologic change. FDCs at ungauged sites are estimated by means of a geostatistical procedure starting from data observed at about 3000 sites across Europe.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Cited articles
Alpert, P., Ben‐Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., and Manes, A.: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001gl013554, 2002. a
Ashkar, F. and Aucoin, F.: Choice between competitive pairs of frequency models for use in hydrology: a review and some new results, Hydrol. Sci. J., 57, 1092–1106, https://doi.org/10.1080/02626667.2012.701746, 2012. a
Ashkar, F. and Ba, I.: Selection between the generalized Pareto and kappa distributions in peaks-over-threshold hydrological frequency modelling, Hydrol. Sci. J., 62, 1167–1180, https://doi.org/10.1080/02626667.2017.1302089, 2017. a, b, c
Bardossy, A. and Plate, E. J.: Space‐time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28, 1247–1259, https://doi.org/10.1029/91WR02589, 1992. a
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a, b
Bhattacharya, P. K. and Burman, P.: Theory and Methods of Statistics, Elsevier, https://doi.org/10.1016/C2014-0-02379-9, 2016. a
Belkhiri, L. and Krakauer, N.: Quantifying the effect of climate variability on seasonal precipitation using Bayesian clustering approach in Kebir Rhumel Basin, Algeria, Stoch. Environ. Res. Risk Assess., 37, 3929–3943, https://doi.org/10.1007/s00477-023-02488-z, 2023. a
Bonsal, B. and Shabbar, A.: Impacts of Large-Scale Circulation Variability on Low Streamflows over Canada: A Review, Can. Water Resour. J., 33, 137–154, https://doi.org/10.4296/cwrj3302137, 2008. a
Cappelli, F. and Grimaldi, S.: Feature importance measures for hydrological applications: insights from a virtual experiment, Stoch. Environ. Res. Risk Assess., 37, 4921–4939, https://doi.org/10.1007/s00477-023-02545-7, 2023. a
Castellarin, A.: Probabilistic envelope curves for design flood estimation at ungauged sites, Water Resour. Res., 43, 2005WR004384, https://doi.org/10.1029/2005WR004384, 2007. a
Castellarin, A., Burn, D. H., and Brath, A.: Assessing the effectiveness of hydrological similarity measures for flood frequency analysis, J. Hydrol., 241, 270–285, https://doi.org/10.1016/S0022-1694(00)00383-8, 2001. a
Castellarin, A., Magnini, A., Kyaw, K. K., Ciavaglia, F., Bertola, M., Blöschl, G., Volpi, E., Claps, P., Viglione, A., Marinelli, A., and Vogel, R. M.: Frequency of Italian Record-Breaking Floods over the Last Century (1911–2020), Atmosphere, 15, 865, https://doi.org/10.3390/atmos15070865, 2024. a, b
Chen, N., Thual, S., and Hu, S.: El Niño and the Southern Oscillation: Observation, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, B978012409548911766X, https://doi.org/10.1016/B978-0-12-409548-9.11766-X, 2019. a
Cheng, L. and AghaKouchak, A.: Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate, Sci. Rep., 4, 7093, https://doi.org/10.1038/srep07093, 2014. a
Claps, P., Ganora, D., and Mazzoglio, P.: Rainfall regionalization techniques, in: Rainfall, Elsevier, 327–350, https://doi.org/10.1016/B978-0-12-822544-8.00013-5, 2022. a
Coles, S.: An introduction to statistical modeling of extreme values, Springer series in statistics, Springer, London, New York, ISBN 9781852334598, 2001. a
Conte, M., Giuffrida, A., and Tedesco, S.: The Mediterranean Oscillation [L'Oscillazione Mediterranea], Mem. Soc. Geogr. Ital., 46, 115–124, 1991. a
Coscarelli, R., Caloiero, T., Filice, E., Marsico, L., and Rotundo, R.: Meteorological Drought Characterization in the Calabria Region (Southern Italy), Climate, 11, 160, https://doi.org/10.3390/cli11080160, 2023. a
Criado-Aldeanueva, F., and Soto-Navarro, J.: Climatic Indices over the Mediterranean Sea: A Review, Appl. Sci., 10, 5790, https://doi.org/10.3390/app10175790, 2020. a, b, c
Das, J., Jha, S., and Goyal, M. K.: On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: Wavelet & global coherence approaches, Atmos. Res., 238, 104889, https://doi.org/10.1016/j.atmosres.2020.104889, 2020. a, b
Diodato, N., and Bellocchi, G.: Using Historical Precipitation Patterns to Forecast Daily Extremes of Rainfall for the Coming Decades in Naples (Italy), Geosciences, 8, 293, https://doi.org/10.3390/geosciences8080293, 2018. a
El Adlouni, S. and Ouarda, T. B. M. J.: Joint Bayesian model selection and parameter estimation of the generalized extreme value model with covariates using birth‐death Markov chain Monte Carlo, Water Resour. Res., 45, 2007WR006427, https://doi.org/10.1029/2007WR006427, 2009. a
Fauer, F. S. and Rust, H. W.: Non-stationary large-scale statistics of precipitation extremes in central Europe, Stoch. Environ. Res. Risk Assess., 37, 4417–4429, https://doi.org/10.1007/s00477-023-02515-z, 2023. a, b
Gabriele, S. and Arnell, N.: A hierarchical approach to regional flood frequency analysis, Water Resour. Res., 27, 1281–1289, https://doi.org/10.1029/91WR00238, 1991. a, b, c
Gonzalez‐Hidalgo, J. C., Beguería, S., Peña‐Angulo, D., and Blanco, V. T.: Catalogue and Analysis of Extraordinary Precipitation Events in the Spanish Mainland, 1916–2022, Int. J. Climatol., 45, https://doi.org/10.1002/joc.8785, 2025. a
González-Pérez, A., Álvarez-Esteban, R., Penas, A., and Del Río, S.: Analysis of recent rainfall trends and links to teleconnection patterns in California (U.S.), J. Hydrol., 612, 128211, https://doi.org/10.1016/j.jhydrol.2022.128211, 2022. a
Hengl, T.: A Practical Guide to Geostatistical Mapping of Environmental Variables, EUR 22904 EN, Office for Official Publications of the European Communities, Luxembourg, ISBN 9789279069048, 2007. a
Jayaweera, L., Wasko, C., Nathan, R., and Johnson, F.: Non-stationarity in extreme rainfalls across Australia, J. Hydrol., 624, 129872, https://doi.org/10.1016/j.jhydrol.2023.129872, 2023. a
Jenkinson, A. F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Q. J. R. Meteorol. Soc., 81, 158–171, https://doi.org/10.1002/qj.49708134804, 1955. a, b
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland, Int. J. Climatol., 17, 1433–1450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P, 1997. a
Johnson, K., Smithers, J., Schulze, R., and Kjeldsen, T.: Non-stationary frequency analysis of extreme rainfall events on the east coast of KwaZulu-Natal, South Africa, Hydrol. Sci. J., 70, 849–859, https://doi.org/10.1080/02626667.2025.2464233, 2025. a
Krichak, S. O. and Alpert, P.: Decadal trends in the east Atlantic-west Russia pattern and Mediterranean precipitation, Int. J. Climatol., 25, 183–192, https://doi.org/10.1002/joc.1124, 2005. a, b
Krichak, S. O., Kishcha, P., and Alpert, P.: Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation, Theor. Appl. Climatol., 72, 209–220, https://doi.org/10.1007/s007040200021, 2002. a
Krichak, S. O., Breitgand, J. S., Gualdi, S., and Feldstein, S. B.: Teleconnection–extreme precipitation relationships over the Mediterranean region, Theor. Appl. Climatol., 117, 679–692, https://doi.org/10.1007/s00704-013-1036-4, 2014. a, b
Laio, F., Di Baldassarre, G., and Montanari, A.: Model selection techniques for the frequency analysis of hydrological extremes, Water Resour. Res., 45, 2007WR006666, https://doi.org/10.1029/2007WR006666, 2009. a
Lopez-Bustins, J. A., Arbiol-Roca, L., Martin-Vide, J., Barrera-Escoda, A., and Prohom, M.: Intra-annual variability of the Western Mediterranean Oscillation (WeMO) and occurrence of extreme torrential precipitation in Catalonia (NE Iberia), Nat. Hazards Earth Syst. Sci., 20, 2483–2501, https://doi.org/10.5194/nhess-20-2483-2020, 2020. a
Lun, D., Fischer, S., Viglione, A., and Blöschl, G.: Significance testing of rank cross-correlations between autocorrelated time series with short-range dependence, J. Appl. Stat., 50, 2934–2950, https://doi.org/10.1080/02664763.2022.2137115, 2023. a, b
Luppichini, M. and Bini, M.: Evolution of rainfall in Italy over the last 200 years: Interactions between climate indices and global warming, Atmos. Res., 326, 108276, https://doi.org/10.1016/j.atmosres.2025.108276, 2025. a
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.: Flood frequency analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, 2015. a
Magnini, A., Lombardi, M., Bujari, A., Mattivi, P., Shustikova, I., Persiano, S., Patella, M., Bitelli, G., Bellavista, P., Lo Conti, F., Tirri, A., Bagli, S., Mazzoli, P., and Castellarin, A.: Geomorphic flood hazard mapping: from floodplain delineation to flood hazard characterization, Hydrol. Sci. J., 68, 2388–2403, https://doi.org/10.1080/02626667.2023.2269909, 2023. a
Magnini, A., Lombardi, M., Ouarda, T. B. M. J., and Castellarin, A.: AI-driven morphoclimatic regional frequency modelling of sub-daily rainfall-extremes, J. Hydrol., 631, 130808, https://doi.org/10.1016/j.jhydrol.2024.130808, 2024. a, b
Magnini, A., Pavan, V., and Castellarin, A.: Supplement code – Informativeness of teleconnections in frequency analysis of rainfall extremes, Zenodo [code], https://doi.org/10.5281/zenodo.16610039, 2025. a
Marra, F., Armon, M., Borga, M., and Morin, E.: Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales, Geophys. Res. Lett., 48, e2020GL091498, https://doi.org/10.1029/2020GL091498, 2021. a
Martins, E. S. and Stedinger, J. R.: Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data, Water Resour. Res., 36, 737–744, https://doi.org/10.1029/1999WR900330, 2000. a
Martin-Vide, J. and Lopez‐Bustins, J.: The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula, Int. J. Climatol., 26, 1455–1475, https://doi.org/10.1002/joc.1388, 2006. a, b
Mazzoglio, P., Butera, I., and Claps, P.: I2-RED: A Massive Update and Quality Control of the Italian Annual Extreme Rainfall Dataset, Water, 12, 3308, https://doi.org/10.3390/w12123308, 2020a. a, b, c
Mazzoglio, P., Butera, I., and Claps, P.: Improved Italian – Rainfall Extreme Dataset (I2-RED), Zenodo [data set], https://doi.org/10.5281/zenodo.4269509, 2020b. a
Nerantzaki, S. D. and Papalexiou, S. M.: Assessing extremes in hydroclimatology: A review on probabilistic methods, J. Hydrol., 605, 127302, https://doi.org/10.1016/j.jhydrol.2021.127302, 2022. a, b, c
Ouachani, R., Bargaoui, Z., and Ouarda, T.: Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda Basin, Int. J. Climatol., 33, 58–76, https://doi.org/10.1002/joc.3407, 2013. a
Ouarda, T. B. M. J. and Charron, C.: Changes in the distribution of hydro-climatic extremes in a non-stationary framework, Sci. Rep., 9, 8104, https://doi.org/10.1038/s41598-019-44603-7, 2019. a
Ouarda, T. B. M. J., Yousef, L. A., and Charron, C.: Non‐stationary intensity‐duration‐frequency curves integrating information concerning teleconnections and climate change, Int. J. Climatol., 39, 2306–2323, https://doi.org/10.1002/joc.5953, 2019. a, b
Ouarda, T. B. M. J., Charron, C., and St‐Hilaire, A.: Uncertainty of stationary and nonstationary models for rainfall frequency analysis, Int. J. Climatol., 40, 2373–2392, https://doi.org/10.1002/joc.6339, 2020. a, b, c
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resour. Res., 49, 187–201, https://doi.org/10.1029/2012WR012557, 2013. a
Ragno, E., AghaKouchak, A., Love, C. A., Cheng, L., Vahedifard, F., and Lima, C. H. R.: Quantifying Changes in Future Intensity‐Duration‐Frequency Curves Using Multimodel Ensemble Simulations, Water Resour. Res., 54, 1751–1764, https://doi.org/10.1002/2017WR021975, 2018. a, b
Rasouli, K., Scharold, K., Mahmood, T. H., Glenn, N. F., and Marks, D.: Linking hydrological variations at local scales to regional climate teleconnection patterns, Hydrol. Process., 34, 5624–5641, https://doi.org/10.1002/hyp.13982, 2020. a
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria [software], https://www.r-project.org/ (last access: 25 September 2025), 2024. a
Redolat, D., Monjo, R., Lopez-Bustins, J. A., and Martin-Vide, J.: Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature, Theor. Appl. Climatol., 135, 1059–1077, https://doi.org/10.1007/s00704-018-2424-6, 2019. a
Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., Sauquet, E., Prudhomme, C., Parey, S., Paquet, E., Neppel, L., and Gailhard, J.: Regional methods for trend detection: Assessing field significance and regional consistency, Water Resour. Res., 44, 2007WR006268, https://doi.org/10.1029/2007WR006268, 2008. a
Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R., and Del Río, S.: Links between teleconnection patterns and precipitation in Spain, Atmos. Res., 156, 14–28, https://doi.org/10.1016/j.atmosres.2014.12.012, 2015. a, b
Salinas, J. L., Castellarin, A., Kohnová, S., and Kjeldsen, T. R.: Regional parent flood frequency distributions in Europe – Part 2: Climate and scale controls, Hydrol. Earth Syst. Sci., 18, 4391–4401, https://doi.org/10.5194/hess-18-4391-2014, 2014. a
Serinaldi, F. and Kilsby, C. G.: Unsurprising Surprises: The Frequency of Record‐breaking and Overthreshold Hydrological Extremes Under Spatial and Temporal Dependence, Water Resour. Res., 54, 6460–6487, https://doi.org/10.1029/2018WR023055, 2018. a, b
Sugihara, G., May, R., and Ye, H.: Detecting causality in complex ecosystems, Science, 338, 496–500, https://doi.org/10.1126/science.1227079, 2012. a
Van Rossum, G. and Drake, F. L.: Python Language Reference Manual, A Python manual, Network Theory Limited, ISBN 0954161785, 2003. a
Vogel, R. M., Zafirakou‐Koulouris, A., and Matalas, N. C.: Frequency of record‐breaking floods in the United States, Water Resour. Res., 37, 1723–1731, https://doi.org/10.1029/2001WR900019, 2001. a
Volpi, E., Grimaldi, S., Aghakouchak, A., Castellarin, A., Chebana, F., Papalexiou, S. M., Aksoy, H., Bárdossy, A., Cancelliere, A., Chen, Y., Deidda, R., Haberlandt, U., Eris, E., Fischer, S., Francés, F., Kavetski, D., Rodding Kjeldsen, T., Kochanek, K., Langousis, A., Mediero Orduña, L., Montanari, A., Nerantzaki, S. D., Ouarda, T. B. M. J., Prosdocimi, I., Ragno, E., Rajulapati, C. R., Requena, A. I., Ridolfi, E., Sadegh, M., Schumann, A., and Sharma, A.: The legacy of STAHY: milestones, achievements, challenges, and open problems in statistical hydrology, Hydrol. Sci. J., 69, 1913==1949, https://doi.org/10.1080/02626667.2024.2385686, 2024. a, b
Zanchettin, D., Franks, S. W., Traverso, P., and Tomasino, M.: On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi‐decadal variability described through the PDO index, Int. J. Climatol., 28, 995–1006, https://doi.org/10.1002/joc.1601, 2008. a
Zhang, X., Zwiers, F. W., and Li, G.: Monte Carlo Experiments on the Detection of Trends in Extreme Values, J. Climate, 17, 1945–1952, https://doi.org/10.1175/1520-0442(2004)017<1945:mceotd>2.0.co;2, 2004. a
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like Interdecadal Variability: 1900–93, J. Climate, 10, 1004–1020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2, 1997. a
Short summary
This study describes a new methodology to identify regional structures in the dependence of extreme rainfall on global climate indices. The study area is North-Central Italy, but the methods are highly adaptable to other regions. We observe that while multiple climate indices show influence, the Western Mediterranean Oscillation Index and East Atlantic West Russia pattern appear to have the strongest effects, with regional structures that align with other studies. We also show that using these indices may improve estimation of extreme rainfall depth with a given probability.
This study describes a new methodology to identify regional structures in the dependence of...