Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Esri: ArcGIS Desktop: Release 10.8. Environmental Systems Research Institute [code],
https://desktop.arcgis.com/ (last access: 9 September 2025), 2020.
Fang, X., Zhao, Z., Li, J., Yan, M., Pan, B., Song, C., and Dai, S.: Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift, Sci. China Ser. D, 48, 1040–1051, https://doi.org/10.1360/03yd0188, 2005.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3–30, https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and Schneider, M.: Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle, Rev. Geophys., 54, 809–865, https://doi.org/10.1002/2015RG000512, 2016.
Gómez-Alday, J. J., Hussein, S., Arman, H., Alshamsi, D., Murad, A., Elhaj, K., and Aldahan, A.: A multi-isotopic evaluation of groundwater in a rapidly developing area and implications for water management in hyper-arid regions, Sci. Total Environ., 805, 150245, https://doi.org/10.1016/j.scitotenv.2021.150245, 2022.
Guo, X., Feng, Q., Yin, Z., Si, J., Xi, H., and Zhao, Y.: Critical role of groundwater discharge in sustaining streamflow in a glaciated alpine watershed, northeastern Tibetan Plateau, Sci. Total Environ., 822, 153578, https://doi.org/10.1016/j.scitotenv.2022.153578, 2022.
Guo, X., Feng, Q., Liu, W., Li, Z., Wen, X., Si, J., Xi, H., Guo, R., and Jia, B.: Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China, Hydrolog. Process., 29, 4703–4718, https://doi.org/10.1002/hyp.10495, 2015.
He, J., Ma, J., Zhao, W., and Sun, S.: Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China, Hydrogeol. J., 23, 1745–1759, https://doi.org/10.1007/s10040-015-1311-9, 2015.
Huang, J., Huang, Y., and Zhang, Z.: Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China, PLoS One, 9, e91528, https://doi.org/10.1371/journal.pone.0091528, 2014.
IAEA/WMO: Global Network of Isotopes in Precipitation (GNIP) Database, International Atomic Energy Agency/World Meteorological Organization [data set],
https://www.iaea.org/water (last access: 9 September 2025), 2025.
Jasechko, S.: Global Isotope Hydrogeology – Review, Rev. Geophys., 57, 835–965, https://doi.org/10.1029/2018RG000627, 2019.
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10..5194/hess-10-873-2006, 2006.
Kalvāns, A., Dēliòa, A., Babre, A., and Popovs, K.: An insight into water stable isotope signatures in temperate catchment, J. Hydrol., 582, 124442, https://doi.org/10.1016/j.jhydrol.2019.124442, 2020.
Kebede, S., Abdalla, O., Sefelnasr, A., Tindimugaya, C., and Mustafa, O.: Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence, Hydrogeol. J., 25, 707–726, https://doi.org/10.1007/s10040-016-1503-y, 2017.
Keery, J., Binley, A., Crook, N., and Smith, J. W. N.: Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series, J. Hydrol., 336, 1–16, https://doi.org/10.1016/j.jhydrol.2006.12.003, 2007.
Kuang, X., Liu, J., Scanlon, B. R., Jiao, J. J., Jasechko, S., Lancia, M., Biskaborn, B. K., Wada, Y., Li, H., Zeng, Z., Guo, Z., Yao, Y., Gleeson, T., Nicot, J.-P., Luo, X., Zou, Y., and Zheng, C.: The changing nature of groundwater in the global water cycle, Science, 383, eadf0630, https://doi.org/10.1126/science.adf0630, 2024.
Li, L. and Garzione, C. N.: Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction, Earth Planet. Sc. Lett., 460, 302–314, https://doi.org/10.1016/j.epsl.2016.11.046, 2017.
Li, M., Xie, Y., Dong, Y., Wang, L., and Zhang, Z.: Review: Recent progress on groundwater recharge research in arid and semiarid areas of China, Hydrogeol. J., 32, 9–30, https://doi.org/10.1007/s10040-023-02656-z, 2024.
Lin, X., Jolivet, M., Liu-Zeng, J., Cheng, F., Wu, Z., Tian, Y., Li, L., and Chen, J.: The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments, Geosciences, 12, 166, https://doi.org/10.3390/geosciences12040166, 2022.
Ma, L., Cheng, W., Bo, J., Li, X., and Gu, Y.: Spatio-Temporal Variation of Land-Use Intensity from a Multi-Perspective – Taking the Middle and Lower Reaches of Shule River Basin in China as an Example, Sustainability, 10, 771, https://doi.org/10.3390/su10030771, 2018.
Ma, R., Chen, K., Andrews, C. B., Loheide, S. P., Sawyer, A. H., Jiang, X., Briggs, M. A., Cook, P. G., Gorelick, S. M., Prommer, H., Scanlon, B. R., Guo, Z., and Zheng, C.: Methods for Quantifying Interactions Between Groundwater and Surface Water, Annu. Rev. Env. Resour., 49, 623–653, https://doi.org/10.1146/annurev-environ-111522-104534, 2024.
Meng, K., Wang, E., Chu, J. J., Su, Z., and Fan, C.: Late Cenozoic river system reorganization and its origin within the Qilian Shan, NE Tibet, J. Struct. Geol., 138, 104128, https://doi.org/10.1016/j.jsg.2020.104128, 2020.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved loads, Am. J. Sci., 287, 401–428, 1987.
Murdoch, L. C. and Kelly, S. E.: Factors affecting the performance of conventional seepage meters, Water Resour. Res., 39, 1163, https://doi.org/10.1029/2002WR001347, 2003.
Oyarzún, R., Sandro, Z., Hugo, M., Jorge, O., Evelyn, A., and Kretschmer, N.: Chemical and isotopic assessment of surface water–shallow groundwater interaction in the arid Grande river basin, North-Central Chile, Hydrolog. Sci. J., 61, 2193–2204, https://doi.org/10.1080/02626667.2015.1093635, 2016.
Schoeller, H.: Qualitative evaluation of groundwater resources, in: Methods and Techniques of Ground-water Investigation and Development, Proc. 2nd Ground-water Seminar, Tehran, 1966, Water Resources Series No. 33, UNESCO, United Nations, New York, pp. 48–83, ISBN 92-3-101070-5, 1967.
Sophocleous, M.: Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002.
U.S. Geological Survey: The National Map—USGS Topo, U.S. Geological Survey [data set],
https://basemap.nationalmap.gov/arcgis/rest/services/USGSTopo/MapServer, last access: 9 September 2025.
Wang, L., Li, G., Dong, Y., Han, D., and Zhang, J.: Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper–middle reaches of the Shule River basin, northwestern China, Environ. Earth Sci., 73, 1901–1915, https://doi.org/10.1007/s12665-014-3719-2, 2015.
Wang, L., Dong, Y., Xie, Y., Song, F., Wei, Y., and Zhang, J.: Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China, Hydrogeol. J., 24, 1967–1979, 2016.
Wang, L., Dong, Y., and Xu, Z.: A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China, J. Asian Earth Sci., 146, 20–29, https://doi.org/10.1016/j.jseaes.2017.04.023, 2017.
Wang, L., Liu, W., Xu, Z., and Zhang, J.: Water sources and recharge mechanisms of the Yarlung Zangbo River in the Tibetan Plateau: Constraints from hydrogen and oxygen stable isotopes, J. Hydrol., 614, 128585, https://doi.org/10.1016/j.jhydrol.2022.128585, 2022.
Wang, L., Dong, Y., Xie, Y., and Chen, M.: Hydrological processes and water quality in arid regions of Central Asia: insights from stable isotopes and hydrochemistry of precipitation, river water, and groundwater, Hydrogeol. J., 32, 131–147, https://doi.org/10.1007/s10040-023-02654-1, 2024a.
Wang, N., Zhang, S., He, J., Pu, J., Wu, X., and Jiang, X.: Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique, Chinese Sci. Bull., 54, 2751–2757, https://doi.org/10.1007/s11434-009-0505-8, 2009.
Wang, X., Jia, S., Xu, Y. J., Liu, Z., and Mao, B.: Dual stable isotopes to rethink the watershed-scale spatiotemporal interaction between surface water and groundwater, J. Environ. Manage., 351, 119728, https://doi.org/10.1016/j.jenvman.2023.119728, 2024b.
Wu, J., Li, H., Zhou, J., Tai, S., and Wang, X.: Variation of Runoff and Runoff Components of the Upper Shule River in the Northeastern Qinghai–Tibet Plateau under Climate Change, Water, 13, 3357, https://doi.org/10.3390/w13233357, 2021.
Xiao, Y., Zhang, Y., Yang, H., Wang, L., Han, J., Hao, Q., Wang, J., Zhao, Z., Hu, W., Wang, S., Fan, Q., and Qi, Z.: Interaction regimes of surface water and groundwater in a hyper-arid endorheic watershed on Tibetan Plateau: Insights from multi-proxy data, J. Hydrol., 644, 132020, https://doi.org/10.1016/j.jhydrol.2024.132020, 2024.
Xie, C., Zhao, L., Eastoe, C. J., Wang, N., and Dong, X.: An isotope study of the Shule River Basin, Northwest China: Sources and groundwater residence time, sulfate sources and climate change, J. Hydrol., 612, 128043, https://doi.org/10.1016/j.jhydrol.2022.128043, 2022.
Xie, C., Liu, H., Li, X., Zhao, H., Dong, X., Ma, K., Wang, N., and Zhao, L.: Spatial characteristics of hydrochemistry and stable isotopes in river and groundwater, and runoff components in the Shule River Basin, Northeastern of Tibet Plateau, J. Environ. Manage., 349, 119512, https://doi.org/10.1016/j.jenvman.2023.119512, 2024.
Yang, H., Yang, X., Cunningham, D., Hu, Z., Huang, X., Huang, W., Yang, H., Miao, S., and Zhang, L.: A Regionally Evolving Transpressional Duplex Along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints From the Sanweishan and Nanjieshan, China, Tectonics, 39, e2019TC005749, https://doi.org/10.1029/2019TC005749, 2020.
Yang, N., Zhou, P., Wang, G., Zhang, B., Shi, Z., Liao, F., Li, B., Chen, X., Guo, L., Dang, X., and Gu, X.: Hydrochemica
l and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China, J. Hydrol., 598, 126243, https://doi.org/10.1016/j.jhydrol.2021.126243, 2021.
Zafarmomen, N., Alizadeh, H., Bayat, M., Ehtiat, M., and Moradkhani, H.: Assimilation of Sentinel-Based Leaf Area Index for Modeling Surface-Ground Water Interactions in Irrigation Districts, Water Resour. Res., 60, e2023WR036080, https://doi.org/10.1029/2023WR036080, 2024.
Zhang, Y., Tan, H., Cong, P., Shi, D., Rao, W., and Zhang, X.: Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change, Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10..5194/hess-27-4019-2023, 2023.
Zhou, J., Ding, Y., Wu, J., Liu, F., and Wang, S.: Streamflow generation in semi-arid, glacier-covered, montane catchments in the upper Shule River, Qilian Mountains, northeastern Tibetan plateau, Hydrol. Process., 35, e14276, https://doi.org/10.1002/hyp.14276, 2021.
Zhou, J., Wu, J., Liu, S., Zeng, G., Qin, J., Wang, X., and Zhao, Q.: Hydrograph Separation in the Headwaters of the Shule River Basin: Combining Water Chemistry and Stable Isotopes, Adv. Meteorol., 2015, 830306, https://doi.org/10.1155/2015/830306, 2015.