Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4327-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4327-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Operational calibration and performance improvement for a 1D hydrodynamic model in a data-scarce coastal area
Francisco Rodrigues do Amaral
CORRESPONDING AUTHOR
Department of HyDRIMZ, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
Benoît Camenen
RiverLy, INRAE, Villeurbanne, France
Tin Nguyen Trung
CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
Tran Anh Tu
Vietnam National University – Ho Chi Minh City (VNU-HCM), Thu Duc City, Ho Chi Minh City, Vietnam
Thierry Pellarin
Department of HyDRIMZ, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
Nicolas Gratiot
Department of HyDRIMZ, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
Related authors
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023, https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Short summary
We propose an in-depth analysis of typhoon-induced compound flood drivers in the megacity of Ho Chi Minh, Vietnam. We use in situ and satellite measurements throughout the event to form a holistic overview of its impact. No evidence of storm surge was found, and peak precipitation presents a 16 h time lag to peak river discharge, which evacuates only 1.5 % of available water. The astronomical tide controls the river level even during the extreme event, and it is the main urban flood driver.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023, https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Short summary
We propose an in-depth analysis of typhoon-induced compound flood drivers in the megacity of Ho Chi Minh, Vietnam. We use in situ and satellite measurements throughout the event to form a holistic overview of its impact. No evidence of storm surge was found, and peak precipitation presents a 16 h time lag to peak river discharge, which evacuates only 1.5 % of available water. The astronomical tide controls the river level even during the extreme event, and it is the main urban flood driver.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Cited articles
Babut, M., Mourier, B., Desmet, M., Simonnet-Laprade, C., Labadie, P., Budzinski, H., De Alencastro, L. F., Tu, T. A., Strady, E., and Gratiot, N.: Where has the pollution gone? A survey of organic contaminants in Ho Chi Minh city/Saigon River (Vietnam) bed sediments, Chemosphere, 217, 261–269, https://doi.org/10.1016/j.chemosphere.2018.11.008, 2019. a
Brent, R. P.: Algorithms for Minimization Without Derivatives, Courier Corporation, ISBN 978-0-48614368-2, https://books.google.nl/books/about/Algorithms_for_Minimization_Without_Deri.html?id=AITCAgAAQBAJ&redir_esc=y (last access: 9 September 2025), 2013. a
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5V40S7W, 2015. a
Camenen, B., Dramais, G., Le Coz, J., Ho, T. D., Gratiot, N., and Piney, S.: Estimation d'une courbe de tarage hauteur-dénivelée-débit pour une rivière influencée par la marée, Houille Blanche, 5, 16–21, https://doi.org/10.1051/lhb/2017039, 2017. a
Camenen, B., Gratiot, N., Cohard, J.-A., Gard, F., Tran, V. Q., Nguyen, A.-T., Dramais, G., van Emmerik, T., and Némery, J.: Monitoring discharge in a tidal river using water level observations: Application to the Saigon River, Vietnam, Sci. Total Environ., 761, 143195, https://doi.org/10.1016/j.scitotenv.2020.143195, 2021. a, b, c, d
Camenen, B., Faure, J.-B., Décanis, S., and Dieval, L.: A 1D Numerical Tool for Real Time Modelling of a Complex River Network, in: Advances in Hydroinformatics, Proc. 6th SimHydro conference, Sophia-Antipolis, France, 16–18 June 2021, 41–52, Springer, ISBN 978-981-19-1600-7, https://doi.org/10.1007/978-981-19-1600-7_3, 2022. a
Camenen, B., Gerarduzzi, K., Terraz, T., Rodrigues do Amaral, F., Gratiot, N., and Pellarin, T.: 1D numerical modelling of a complex tidal river: case of the River Saigon, Vietnam, in: Proc. 7th SimHydro conference, Chatou, France, 7–9 November 2023, https://doi.org/10.1007/978-981-97-4072-7_17, 2023. a, b, c, d
Chen, Y.-C., Yang, T.-M., Hsu, N.-S., and Kuo, T.-M.: Real-time discharge measurement in tidal streams by an index velocity, Environ. Monit. Assess., 184, 6423–6436, https://doi.org/10.1007/s10661-011-2430-y, 2012. a
Eltner, A., Sardemann, H., and Grundmann, J.: Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery, Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, 2020. a
FranceInfo: Vietnam : la canicule provoque une grave sécheresse, FranceInfo, https://www.francetvinfo.fr/meteo/canicule/vietnam-la-canicule-provoque-une-grave-secheresse_6526445.html#at_medium=5&at_campaign_group=1&at_campaign=video&at_offre=3&at_variant=V3&at_send_date=20240505&at_recipient_id=726375-1571699586-49b9ee82 (last access: 14 August 2025), 2024. a
Grund, F.: Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S, Z. Angew. Math. Mech., 59, 141–142, https://doi.org/10.1002/zamm.19790590235, 1979. a
Heinrich, P., Hagemann, S., Weisse, R., Schrum, C., Daewel, U., and Gaslikova, L.: Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe, Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, 2023. a
Khoi, D. N., Sam, T. T., Chi, N. T. T., Linh, D. Q., and Nhi, P. T. T.: Impact of future climate change on river discharge and groundwater recharge: a case study of Ho Chi Minh City, Vietnam, J. Water Clim. Change, 13, 1313–1325, https://doi.org/10.2166/wcc.2022.379, 2022. a
Launay, M., Dugué, V., Faure, J.-B., Coquery, M., Camenen, B., and Le Coz, J.: Numerical modelling of the suspended particulate matter dynamics in a regulated river network, Sci. Total Environ., 665, 591–605, https://doi.org/10.1016/j.scitotenv.2019.02.015, 2019. a
Lossouarn, C., Quertamp, F., Gratiot, N., Fenghua, S., and Daigo, Y.: Water Megacities and Global Change: Portraits of 15 Emblematic Cities of the World, ISBN 978-92-3-100161-1, https://www.researchgate.net/publication/313376505_Water_Megacities_and_Global_Change_Portraits_of_15_Emblematic_Cities_of_the_World (last access: 14 August 2025), 2016. a
Mendez Rios, F., Le Coz, J., Renard, B., and Terraz, T.: Bayesian calibration of a 1D hydrodynamic model used as a rating curve in a tidal river: Application to the Lower Seine River, France, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6587, https://doi.org/10.5194/egusphere-egu23-6587, 2023. a, b
Ngo, M. T., Lee, J. M., Lee, H. A., and Woo, N. C.: The sustainability risk of Ho Chi Minh City, Vietnam, due to saltwater intrusion, Geosci. J., 19, 547–560, https://doi.org/10.1007/s12303-014-0052-4, 2015. a
Nguyen, A. T., Némery, J., Gratiot, N., Garnier, J., Dao, T. S., Thieu, V., and Laruelle, G. G.: Biogeochemical functioning of an urbanized tropical estuary: Implementing the generic C-GEM (reactive transport) model, Sci. Total Environ., 784, 147261, https://doi.org/10.1016/j.scitotenv.2021.147261, 2021. a
Nguyen, A. T., Némery, J., Gratiot, N., Dao, T.-S., Le, T. T. M., Baduel, C., and Garnier, J.: Does eutrophication enhance greenhouse gas emissions in urbanized tropical estuaries?, Environ. Pollut., 303, 119105, https://doi.org/10.1016/j.envpol.2022.119105, 2022. a
Nguyen, P. T. B., Koedsin, W., McNeil, D., and Van, T. P. D.: Remote sensing techniques to predict salinity intrusion: application for a data-poor area of the coastal Mekong Delta, Vietnam, Int. J. Remote Sens., 39, 6676–6691, https://doi.org/10.1080/01431161.2018.1466071, 2018. a
Nguyen, T. T. N., Némery, J., Gratiot, N., Strady, E., Tran, V. Q., Nguyen, A. T., Aimé, J., and Peyne, A.: Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – Dongnai (southern Vietnam), Sci. Total Environ., 653, 370–383, https://doi.org/10.1016/j.scitotenv.2018.10.319, 2019. a, b
Orie, A.: Hundreds of thousands of fish die off in Vietnam as heatwave roasts Southeast Asia, CNN, https://edition.cnn.com/2024/05/02/climate/mass-fish-die-off-vietnam-intl-scli/index.html (last access: 14 August 2025), 2024. a
Rodrigues do Amaral, F., Trung, T. N., Pellarin, T., and Gratiot, N.: Datasets of high-resolution water level and discharge from the Saigon-Dong Nai estuary system impacted by a developing megacity, Ho Chi Minh City – Vietnam, Data in Brief, 48, 109147, https://doi.org/10.1016/j.dib.2023.109147, 2023. a
Rodrigues do Amaral, F., Pellarin, T., Tin, T. N., Tu, T. A., and Gratiot, N.: Enhancing discharge estimation from SWOT satellite data in a tropical tidal river environment, PLOS Water, 3, e0000226, https://doi.org/10.1371/journal.pwat.0000226, 2024a. a
Rodrigues Do Amaral, F., Camenen, B., Nguyen T. T., Anh Tu, T., Pellarin, T., and Gratiot, N.: Water discharge and water level output from the MAGE 1D hydrodynamic model for the Saigon and Dongnai rivers, Vietnam, 2016–2022, DataSuds, V1, UMR IGE [data set], https://doi.org/10.23708/KLQMSR, 2024b. a
Rouby, P.-A., Camenen, B., Pénard, L., Kieffer, L., and Terraz, T.: Pamhyr2: A Graphical User Interface for 1D Hydro-Sedimentary Modelling of Rivers, in: Advances in Hydroinformatics – SimHydro 2023 Volume 2, Springer, Singapore, 485–497, ISBN 978-981-97-4076-5, https://doi.org/10.1007/978-981-97-4076-5_33, 2024. a
Ruhl, C. and Simpson, M.: Computation of discharge using the index-velocity method in tidally affected areas, Scientific Investigations Report, https://www.semanticscholar.org/paper/Computation-of-discharge-using-the-index-velocity-Ruhl-Simpson/ (last access: 9 September 2025), 2005. a
Scheiber, L., Hoballah Jalloul, M., Jordan, C., Visscher, J., Nguyen, H. Q., and Schlurmann, T.: The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index, Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, 2023. a, b
Souhar, O. and Faure, J.-B.: Approach for uncertainty propagation and design in Saint Venant equations via automatic sensitive derivatives applied to Saar river, Can. J. Civ. Eng., 36, 1144–1154, https://doi.org/10.1139/L09-057, 2009 (data available at: https://gitlab.irstea.fr/jean-baptiste.faure/MAGE, last access: 4 April 2024). a, b
Vachaud, G., Quertamp, F., Phan, T. S. H., Tran Ngoc, T. D., Nguyen, T., Luu, X. L., Nguyen, A. T., and Gratiot, N.: Flood-related risks in Ho Chi Minh City and ways of mitigation, J. Hydrol., 573, 1021–1027, https://doi.org/10.1016/j.jhydrol.2018.02.044, 2019. a
van Emmerik, T., Strady, E., Kieu-Le, T.-C., Nguyen, L., and Gratiot, N.: Seasonality of riverine macroplastic transport, Sci. Rep., 9, 13549, https://doi.org/10.1038/s41598-019-50096-1, 2019. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wood, M., Haigh, I. D., Le, Q. Q., Nguyen, H. N., Tran, H. B., Darby, S. E., Marsh, R., Skliris, N., Hirschi, J. J.-M., Nicholls, R. J., and Bloemendaal, N.: Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region, Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, 2023. a
Xu, H., Tian, Z., Sun, L., Ye, Q., Ragno, E., Bricker, J., Mao, G., Tan, J., Wang, J., Ke, Q., Wang, S., and Toumi, R.: Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai, Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022, 2022. a
Zakharova, E., Nielsen, K., Kamenev, G., and Kouraev, A.: River discharge estimation from radar altimetry: Assessment of satellite performance, river scales and methods, J. Hydrol., 583, 124561, https://doi.org/10.1016/j.jhydrol.2020.124561, 2020. a
Short summary
This study explores how to improve models predicting water flow in southern Vietnam's Saigon and Dongnai rivers, where data are scarce. By testing three different methods to adjust the river model using river water level and river discharge measurements, we found ways of better predicting river behavior. These findings can help manage water resources more effectively and aid in decision-making for flood protection and environmental conservation.
This study explores how to improve models predicting water flow in southern Vietnam's Saigon and...