Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4281-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4281-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topothermohaline convection – from synthetic simulations to reveal processes in a thick geothermal system
Attila Galsa
Department of Geophysics and Space Science, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest 1117, Hungary
Institute of Earth Physics and Space Science, HUN-REN, Sopron 9400, Hungary
Márk Szijártó
Department of Geophysics and Space Science, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest 1117, Hungary
József and Erzsébet Tóth Endowed Hydrogeology Chair, Department of Geology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest 1117, Hungary
Ádám Tóth
CORRESPONDING AUTHOR
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht 3584, the Netherlands
Judit Mádl-Szőnyi
József and Erzsébet Tóth Endowed Hydrogeology Chair, Department of Geology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest 1117, Hungary
Cited articles
An, R., Jiang, X.-W., Wang, J.-Z., Wan, L., Wang, X.-Z., and Li, H.: A theoretical analysis of basin-scale groundwater temperature distribution, Hydrogeol. J., 23, 397–404, https://doi.org/10.1007/s10040-014-1197-y, 2015.
Bagheri, R., Nadri, A., Raeisi, E., Kazemi, G. A., Eggenkamp, H. G. M., and Montaseri, A.: Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches, Environ. Earth Sci., 72, 1055–1072, https://doi.org/10.1007/s12665-013-3022-7, 2014.
Balderer, W., Synal, A. H., Deák, J., Fórizs, I., and Leuenberger, F.: Origin of thermal waters in Budapest based on chemical and isotope investigations including chlorine-36, in: Thermal and Mineral Waters, Environmental Earth Sciences, edited by: Balderer, W., Porowski, A., Idris, H., and LaMoreaux, J., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-28824-1_5, 2014.
Barlow, P. M. and Reichard, E. G.: Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18, 247–260, https://doi.org/10.1007/s10040-009-0514-3, 2010.
Birkle, P., García, B. M., and Padrón, C. M. M.: Origin and evolution of formation water at the Jujo–Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water–rock interaction, Appl. Geochem., 24, 543–554, https://doi.org/10.1016/j.apgeochem.2008.12.009, 2009.
Bredehoeft, J. D.: The Toth revolution, Groundwater, 56, 157–159, https://doi.org/10.1111/gwat.12592, 2018.
Bresciani, E., Gleeson, T., Goderniaux, P., de Dreuzy, J. R., Werner, A. D., Wörman, A., Zijl, W., and Batelaan, O.: Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition, Hydrogeol. J., 24, 1087–1090, https://doi.org/10.1007/s10040-016-1397-8, 2016.
Clauser, C. and Villinger, H.: Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben, Geophys. J. Int., 100, 393–414, https://doi.org/10.1111/j.1365-246X.1990.tb00693.x, 1990.
Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N. B., Fisher, B. J., Morgan, D. S., Lee, K. K., and Hinkle, S. R.: Ground-Water Hydrology of the Willamette Basin, Oregon, USGS, Scientific Investigations Report 2005–5168, 83 pp., https://pubs.usgs.gov/sir/2005/5168/pdf/sir2005-5168.pdf (last access: 22 August 2025), 2005.
Cserepes, L. and Lenkey, L.: Forms of hydrothermal and hydraulic flow in a homogeneous unconfined aquifer, Geophys. J. Int., 158, 785–797, https://doi.org/10.1111/j.1365-246X.2004.02182.x, 2004.
Czauner, B. and Mádl-Szőnyi, J.: The function of faults in hydraulic hydrocarbon entrapment: Theoretical considerations and a field study from the Trans-Tisza region, Hungary, AAPG Bull., 95, 795–811, https://doi.org/10.1306/11051010031, 2011.
Czauner, B., Molnár, F., Masetti, M., Arola, T., and Mádl-Szőnyi, J.: Groundwater flow system-based dynamic system approach for geofluids and their resources, Water-Sui, 14, 1015, https://doi.org/10.3390/w14071015, 2022.
Czauner, B., Szijártó, M., Sztanó, O., Mahrez, H. B., Molson, J., Oláh, S., and Mádl-Szőnyi, J.: Re-interpreting renewable and non-renewable water resources in the over-pressured Pannonian Basin, Sci. Rep.-UK, 14, 24586, https://doi.org/10.1038/s41598-024-76076-8, 2024.
Deák, J.: Environmental isotopes and water chemical studies for groundwater research in Hungary, International symposium on isotope hydrology (1978), Neuherberg/München, Germany, 19–23 June, IAEA-SM-228/13, 221–247, https://inis.iaea.org/collection/NCLCollectionStore/_Public/10/460/10460882.pdf (last access: 22 August 2025), 1979.
de Hoyos, A., Viennot, P., Ledoux, E., Matray, J.-M., Rocher, M., and Certes, C.: Influence of thermohaline effects on groundwater modelling – Application to the Paris sedimentary Basin, J. Hydrol., 464–465, 12–26, https://doi.org/10.1016/j.jhydrol.2012.06.014, 2012.
Deming, D.: Introduction to Hydrogeology, McGraw Hill, New York, 480 pp., ISBN-10: 0072326220, 2002.
Duffy, C. J. and Al-Hassan, S.: Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing, Water Resour. Res., 24, 1675–1688, https://doi.org/10.1029/WR024i010p01675, 1988.
Easteal, A. J., Price, W. E., and Woolf, L. A.: Diaphragm cell for high-temperature diffusion measurements, J. Chem. Soc. Farad. T. 1, 85, 1091–1097, https://doi.org/10.1039/F19898501091, 1989.
Elder, J. W.: Steady free convection in a porous medium heated from below, J. Fluid Mech., 27, 29–48, https://doi.org/10.1017/S0022112067000023, 1967.
Erőss, A.: Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda Thermal Karst, Hungary, PhD Dissertation, Eötvös Loránd University, Budapest, opac-EUL01-000542884, 2010.
Erőss, A., Csoma, É.A., Mádl-Szőnyi, J., Sasowsky, I., Feazel, C., Mylorie, J., Palmer, A., and Palmer, M.: The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, Buda Thermal Karst, Hungary. Karst from recent to reservoirs, Karst Waters Institute, Special Publication, 14, 57–63, ISBN 978-0-9789976-3-2, 2008.
Erőss, A., Mádl-Szőnyi, J., and Csoma, A.É.: Hypogenic karst development in a hydrogeological context, Buda Thermal Karst, Budapest, Hungary, Groundwater quality sustainability, IAH Selected Papers on Hydrogeology, 17, 119–133, 2012.
Domenico, P. A. and Palciauskas, V. V.: Theoretical analysis of forced convective heat transfer in regional ground-water flow, GSA Bulletin, 84, 3803–3814, https://doi.org/10.1130/0016-7606(1973)84<3803:TAOFCH>2.0.CO;2, 1973.
Fabiani, G., Klaus, J., and Penna, D.: The influence of hillslope topography on beech water use: a comparative study in two different climates, Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, 2024.
Faulds, J., Coolbaugh, M., Bouchot, V., Moeck, I., and Oguz, K.: Characterizing structural controls of geothermal reservoirs in the Great Basin, USA, and western Turkey: Developing successful exploration strategies in extended terranes, Proceedings World Geothermal Congress, Bali, Indonesia, 25–29 April 2010, 1163, 2010.
Faulds, J. E., Coolbaugh, M. F., Vice, G. S., and Edwards, M. L.: Characterizing structural controls of geothermal fields in the northwestern Great Basin: A progress report, Geoth. Res. T., 30, 69–76, 2006.
Ferguson, G., McIntosh, J. C., Jasechko, S., Kim, J.-H., Famiglietti, J. S., and McDonnell, J. J.: Groundwater deeper than 500 m contributes less than 0.1 % of global river discharge, Communications Earth & Environment, 4, 48, https://doi.org/10.1038/s43247-023-00697-6, 2023.
Fodor, L.: Geological sections across Budapest E-W, in: Budapest: Geological Values and Man – Urbangeological Studies, edited by: Mindszenty, A., Eötvös Loránd University Press, Budapest, 20 pp., ISBN 9789632843681, 2013 (in Hungarian).
Fórizs, I., Szabó, V. R., Deák, J., Hałas, S., Pelc, A., Trembaczowski, A., and Lorberer, Á.: The origin of dissolved sulphate in the thermal waters of Budapest inferred from stable S and O isotopes, Geosciences, 9, 433, https://doi.org/10.3390/geosciences9100433, 2019.
Freeze, R. A. and Witherspoon, P. A.: Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation, Water Resour. Res., 3, 623–634, https://doi.org/10.1029/WR003i002p00623, 1967.
Galsa, A.: Modelling of groundwater flow along a section in the Great Hungarian Plain using hydraulic heads measured in wells, Magyar Geofizika, 38, 245–256, 1997.
Galsa, A., Herein, M., Szijártó, M., Süle, B., and Lenkey, L.: From mantle convection to groundwater flow modelling: In memoriam Prof. László Cserepes (1952–2002), Magyar Geofizika, 63, 158–169, 2022a.
Galsa, A., Tóth, Á., Szijártó, M., Pedretti, D., and Mádl-Szőnyi, J.: Interaction of basin-scale topography- and salinity-driven groundwater flow in synthetic and real hydrogeological systems, J. Hydrol., 609, 127695, https://doi.org/10.1016/j.jhydrol.2022.127695, 2022b.
Galsa, A., Szijártó, M., Tóth, Á., and Mádl-Szőnyi, J.: Topothermohaline convection – from synthetic simulations to reveal processes in a thick geothermal system (Supplementary material), DataverseNL [data set], https://dataverse.nl/privateurl.xhtml?token=b9787f3f-51ad-4aaf-a738-5a1a19e263f9 (last access: 22 August 2025), 2025.
Gleeson, T. and Manning, A. H.: Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls, Water Resour. Res., 44, W10403, https://doi.org/10.1029/2008WR006848, 2008.
Gokgoz, A., Yilmazli, I. E., Gungor, I., and Yavuzer, I.: Hydrogeology and environmental study at the Karahayit geothermal field (Western Turkey), Proceedings World Geothermal Congress, Bali, Indonesia, 25–29 April, 1533, 1–7, 2010.
Goode, D. J.: Direct simulation of groundwater age, Water Resour. Res., 32, 289–296, https://doi.org/10.1029/95WR03401, 1996.
Graham, M. D. and Steen, P. H.: Plume formation and resonant bifurcations in porous-media convection, J. Fluid Mech., 272, 67–90, https://doi.org/10.1017/S0022112094004386, 1994.
Gupta, I., Wilson, A. M., and Rostron, B. J.: Groundwater age, brine migration, and large-scale solute transport in the Alberta Basin, Canada, Geofluids, 15, 608–620, https://doi.org/10.1111/gfl.12131, 2015.
Gutierrez-Negrin, L. C.: Cerro Prieto, Mexico – a convective extensional geothermal play, Geoth. Res. T., 39, 711–716, 2015.
Haitjema, H. M. and Mitchell-Bruker, S.: Are water tables a subdued replica of the topography?, Groundwater, 43, 781–786, https://doi.org/10.1111/j.1745-6584.2005.00090.x, 2005.
Havril, T., Molson, J. W., and Mádl-Szőnyi, J.: Evolution of fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences – A numerical investigation based on the Buda Thermal Karst analogue, Mar. Petrol. Geol., 78, 738–749, https://doi.org/10.1016/j.marpetgeo.2016.10.001, 2016.
Havril, T., Tóth, Á., Molson, J. W., Galsa, A., and Mádl-Szőnyi, J.: Impacts of predicted climate change on groundwater flow systems: Can wetlands disappear due to recharge reduction?, J. Hydrol., 563, 1169–1180, https://doi.org/10.1016/j.jhydrol.2017.09.020, 2018.
Hayashi, M., van der Kamp, G., and Rosenberry, D. O.: Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes, Wetlands, 36, 237–254, https://doi.org/10.1007/s13157-016-0797-9, 2016.
Hewitt, D. R., Neufeld, J. A., and Lister, J. R.: High Rayleigh number convection in a three-dimensional porous medium, J. Fluid Mech., 748, 879–895, https://doi.org/10.1017/jfm.2014.216, 2014.
Hussain, M. S., Abd-Elhamid, H. F., Javadi, A. A., and Sherif, M. M.: Management of seawater intrusion in coastal aquifers: A review, Water-Sui, 11, 2467, https://doi.org/10.3390/w11122467, 2019.
Ingebritsen, S. E., Sanford, W. E., and Neuzil, C. E.: Groundwater in Geologic Processes, Cambridge University Press, 536 pp., https://doi.org/10.1017/9780511807855, 2006.
Jiang, W., Sheng, Y., Shi, Z., Guo, H., Chen, X., Mao, H., Liu, F., Ning, H., Liu, N., and Wang, G.: Hydrogeochemical characteristics and evolution of formation water in the continental sedimentary basin: A case study in the Qaidam Basin, China, Sci. Total Environ., 957, 177672, https://doi.org/10.1016/j.scitotenv.2024.177672, 2024.
Jiang, X.-W., Wan, L., Wang, X.-S., Ge, S., and Liu, J.: Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow, Geophys. Res. Lett., 36, L24402, https://doi.org/10.1029/2009GL041251, 2009.
Jiang, X.-W., Wang, X.-S., Wan, L., and Ge, S.: An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity, Water Resour. Res., 47, W01512, https://doi.org/10.1029/2010WR009346, 2011.
Jiang, X.-W., Cherry, J., and Wan, L.: Flowing wells: terminology, history and role in the evolution of groundwater science, Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, 2020.
Kaiser, B. O., Cacace, M., Scheck-Wenderoth, M., and Lewerenz, B.: Characterization of main heat transport processes in the Northeast German Basin: Constraints from 3-D numerical models, Geochem. Geophy. Geosy., 12, Q07011, https://doi.org/10.1029/2011GC003535, 2011.
Kaiser, B. O., Cacace, M., and Scheck-Wenderoth, M.: 3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport, Environ. Earth Sci., 70, 3643–3659, https://doi.org/10.1007/s12665-013-2249-7, 2013a.
Kaiser, B. O., Cacace, M., and Scheck-Wenderoth, M.: Quaternary channels within the Northeast German Basin and their relevance on double diffusive convective transport processes: Constraints from 3-D thermohaline numerical simulations, Geochem. Geophy. Geosy., 14, 3156–3175, https://doi.org/10.1002/ggge.20192, 2013b.
Kato, V.: Geothermal Exploration in Uganda, in: SDG Short Course I on Exploration and Development of Geothermal Resources, United Nations University, Geothermal Training Programme, Kópavogur, Iceland, 10–31 November 2016, 1–27, 2016.
Kohfahl, C., Post, V. E. A., Hamann, E., Prommer, H., and Simmons, C. T.: Validity and slopes of the linear equation of state for natural brines in salt lake systems, J. Hydrol., 523, 190–195, https://doi.org/10.1016/j.jhydrol.2015.01.054, 2015.
Kolawole, F. and Evenick, J. C.: Global distribution of geothermal gradients in sedimentary basins, Geosci. Front., 14, 101685, https://doi.org/10.1016/j.gsf.2023.101685, 2023.
Kovács, J. and Erőss, A.: Statistically optimal grouping using combined cluster and discriminant analysis (CCDA) on a geochemical database of thermal karst waters in Budapest, Appl. Geochem., 84, 76–86, https://doi.org/10.1016/j.apgeochem.2017.05.009, 2017.
Kreyns, P., Genga, X., and Michael, H. A.: The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers, J. Hydrol., 586, 124863, https://doi.org/10.1016/j.jhydrol.2020.124863, 2020.
Kun, É., Szabó, Zs., Tóth, Gy., Székvölgyi, K., Baranyai-Gáspár, E., Falus, Gy., Gál, N. E., Mekker, J., Szűcs, A., Vári, Z., Tihanyiné Szép, E., and Maros, Gy.: Hydrogeological and heat transport modelling of the Buda Thermal Karst (Budapest, Hungary), IAH 2024 World Groundwater Congress, Davos, Switzerland, 8–23 September 2024, 106358, 2024.
Lapwood, E. R.: Convection of a fuid in a porous medium, Math. Proc. Cambridge, 44, 508–521, https://doi.org/10.1017/S030500410002452X, 1948.
Lenkey, L., Mihályka, J., and Paróczi, P.: Review of geothermal conditions of Hungary, Földtani Közlöny, 151, 65–78, https://doi.org/10.23928/foldt.kozl.2021.151.1.65, 2021.
Licour, L.: The geothermal reservoir of Hainaut: the result of thermal convection in a carbonate and sulfate aquifer, Geol. Belg., 17, 75–81, 2014.
Lipsey, L., Pluymaekers, M., Goldberg, T., van Oversteeg, K., Ghazaryan, L., Cloetingh, S., and van Wees, J.-D.: Numerical modelling of thermal convection in the Luttelgeest carbonate platform, the Netherlands, Geothermics, 64, 135–151, https://doi.org/10.1016/j.geothermics.2016.05.002, 2016.
Lopez, T., Antoine, R., Kerr, Y., Darrozes, J., Rabinowicz, M., Ramillien, G., Cazenave, A., and Genthon, P.: Subsurface hydrology of the Lake Chad Basin from convection modelling and observations, Surv. Geophys., 37, 471–502, https://doi.org/10.1007/s10712-016-9363-5, 2016.
Mádl-Szőnyi, J.: Pattern of Groundwater Flow at the Boundary of Unconfined and Confined Carbonate Systems on the Example of Buda Thermal Karst and its Surroundings, DSc Thesis, 131 pp., https://real-d.mtak.hu/id/eprint/1317 (last access: 22 August 2025), 2019 (in Hungarian).
Mádl-Szőnyi, J. and Tóth, Á.: Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region, Hydrogeol. J., 23, 1359–1380, https://doi.org/10.1007/s10040-015-1274-x, 2015.
Mádl-Szőnyi, J. and Tóth, Á.: Topographically driven fluid flow at the boundary of confined and unconfined sub-basins of carbonates: basic pattern and evaluation approach on the example of Buda thermal Karst, in: EuroKarst 2016, Neuchâtel: Advances in Karst Science, edited by: Renard, P. and Bertrand, C., Springer, Cham, 89–98, https://doi.org/10.1007/978-3-319-45465-8_10, 2017.
Mádlné Szőnyi, J., Erőss, A., Havril, T., Poros, Zs., Győri, O., Tóth, Á., Csoma, A., Ronchi, P., and Mindszenty, A.: Fluids, flow systems and their mineralogical imprints in the Buda Thermal Karst, Földtani Közlöny, 148, 75–96, https://doi.org/10.23928/foldt.kozl.2018.148.1.75, 2018.
Mádl-Szőnyi, J., Czauner, B., Iván, V., Tóth, Á., Simon, Sz., Erőss, A., Bodor, P., Havril, T., Boncz, L., and Sőreg, V.: Confined carbonates – Regional scale hydraulic interaction or isolation?, Mar. Petrol. Geol., 107, 591–612, https://doi.org/10.1016/j.marpetgeo.2017.06.006, 2019.
Mádl-Szőnyi, J., Batelaan, O., Molson, J., Verweij, H., Jiang, X.-W., Carrillo-Rivera, J. J., and Tóth, Á.: Regional groundwater flow and the future of hydrogeology: evolving concepts and communication, Hydrogeol. J., 31, 23–26, https://doi.org/10.1007/s10040-022-02577-3, 2023.
Magri, F.: Derivation of the coefficients of thermal expansion and compressibility for use in FEFLOW, White Papers III: DHI-WASY GmbH, Institute for Water Resource Planning and System Research, Berlin, 13–23, https://hydrosoft.co.kr/sites/default/files/2024-04/Technical_Reference_FEFLOW_white_papers_vol3_ENG.pdf (last access: 22 August 2025), 2005.
Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., and Möller, P.: Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin, J. Hydrol., 520, 342–355, https://doi.org/10.1016/j.jhydrol.2014.11.055, 2015.
Mersich, I., Práger, T., Ambrózy, P., Hunkár, M., and Dunkel, Z.: Climate Atlas of Hungary, Hungarian Meteorological Service, Budapest, 107 pp., ISBN 9637702830, 2003 (in Hungarian).
Moeck, I. S.: Catalog of geothermal play types based on geologic controls, Renew. Sust. Energ. Rev., 37, 867–882, https://doi.org/10.1016/j.rser.2014.05.032, 2014.
Moeck, I. S. and Beardsmore, G.: A new “geothermal play type” catalog: streamlining exploration decision making, Proceedings of the Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford University, Standford, California, 24–26 February 2014, SGP-TR-202, 2014.
Moeck, I. S., Beardsmore, G., and Harvey, C. C.: Cataloging Worldwide Developed Geothermal Systems by Geothermal Play Type, Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015, 2015.
Nield, D. A.: Onset of thermohaline convection in a porous medium, Water Resour. Res., 4, 553–560, https://doi.org/10.1029/WR004i003p00553, 1968.
Nield, D. A. and Bejan, A.: Convection in Porous Media, 5th edn., Springer Int, 988 pp., https://doi.org/10.1007/978-3-319-49562-0, 2017.
Noack, V., Scheck-Wenderoth, M., Cacace, M., and Schneider, M.: Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin), Environ. Earth Sci., 70, 3523–3544, https://doi.org/10.1007/s12665-013-2438-4, 2013.
Ortega Guerrero, M. A.: Numerical analysis of the groundwater flow system and heat transport for sustainable water management in a regional semi-arid basin in Central Mexico, Water-Sui, 14, 1377, https://doi.org/10.3390/w14091377, 2022.
Otero, J., Dontcheva, L. A., Johnston, H., Worthing, R. A., Kurganov, A., Petrova, G., and Doering, C. R.: High-Rayleigh-number convection in a fluid-saturated porous layer, J. Fluid Mech., 500, 263–281, https://doi.org/10.1017/S0022112003007298, 2004.
Otieno, V.: Structural controls on fluid pathways in active geothermal systems. Insights from Olkaria Geothermal Field, Kenya, Proceedings World Geothermal Congress, 5 pp., Reykjavik, Iceland, April–October 2021, 12127, 2020.
Özkaymak, Ç. and Sözbilir, H.: Structural evidence for extensional domain-type geothermal play in Western Anatolia: A case study from Afyon-Akşehir Graben, Afyon Kocatepe University Journal of Science and Engineering, 20, 693–702, https://doi.org/10.35414/akufemubid.704433, 2020.
Özler, H. M.: Hydrogeology and geochemistry in the Curuksu (Denizli) hydrothermal field, western Turkey, Environ. Geol., 39, 1169–1180, https://doi.org/10.1007/s002540000139, 2000.
Pollack, H. N. and Chapman, D. S.: On the regional variation of heat flow, geotherms, and lithospheric thickness, Tectonophysics, 38, 179–296, https://doi.org/10.1016/0040-1951(77)90215-3, 1977.
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat flow from the Earth's interior: Analysis of the global dataset, Rev. Geophys., 31, 267–280, https://doi.org/10.1029/93RG01249, 1993.
Prol-Ledesma, R. M. and Morán-Zenteno, D. J.: Heat flow and geothermal provinces in Mexico, Geothermics, 78, 183–200, https://doi.org/10.1016/j.geothermics.2018.12.009, 2019.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport, Geothermal Energy, 5, 1, https://doi.org/10.1186/s40517-016-0059-3, 2017.
Robinson, N. I. and Love, A. J.: Hidden channels of groundwater flow in Tóthian drainage basins, Adv. Water Resour. 62, 71–78, https://doi.org/10.1016/j.advwatres.2013.10.004, 2013.
Rubin, H.: Thermal convection in a nonhomogeneous aquifer, J. Hydrol., 50, 317–331, https://doi.org/10.1016/0022-1694(81)90076-7, 1981.
Rubin, H.: Application of the aquifer's average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer, J. Hydrol., 57, 321–336, https://doi.org/10.1016/0022-1694(82)90153-6, 1982a.
Rubin, H.: Thermohaline convection in a nonhomogeneous aquifer, J. Hydrol., 57, 307–320, https://doi.org/10.1016/0022-1694(82)90152-4, 1982b.
Rybach, L.: The geothermal conditions in the Rhine Graben – a summary, Bulletin für Angewandte Geologie, 12, 29–32, 2007.
Schindler, M., Baumgärtner, J., Gandy, T., Hauffe, P., Hettkamp, T., Menzel, H., Penzkofer, P., Teza, D., Tischner, T., and Wahll, G.: Successful hydraulic stimulation techniques for electric power production in the Upper Rhine Graben, Central Europe, Proceedings of the World Geothermal Congress, 7 pp., Bali, Indonesia, 25–29 April 2010, 3163, 2010.
Siler, D. L. and Faulds, J. E.: Three-dimensional geothermal fairway mapping: Examples from the western Great Basin, USA, Geothermal Resources Council Transactions, 37, 327–332, 2013.
Simmons, C. T. and Narayan, K. A.: Mixed convection processes below a saline disposal basin, J. Hydrol., 194, 263–285, https://doi.org/10.1016/S0022-1694(96)03204-0, 1997.
Simon, Sz., Déri-Takács, J., Szijártó, M., Szél, L., and Mádl-Szőnyi, J.: Wetland management in recharge regions of regional groundwater flow systems with water shortage, Nyírség region, Hungary, Water-Sui, 15, 3589, https://doi.org/10.3390/w15203589, 2023.
Smith, L. and Chapman, D. S.: On the thermal effects of groundwater flow: 1. Regional scale systems, J. Geophys. Res., 88, 593–608, https://doi.org/10.1029/JB088iB01p00593, 1983.
Szabó, Zs., Szijártó, M., Tóth, Á., and Mádl-Szőnyi, J.: The significance of groundwater table inclination for nature-based replenishment of groundwater-dependent ecosystems by managed aquifer recharge, Water-Sui, 15, 1077, https://doi.org/10.3390/w15061077, 2023.
Szijártó, M., Galsa, A., Tóth, Á., and Mádl-Szőnyi, J.: Numerical investigation of the combined effect of forced and free thermal convection in synthetic groundwater basins, J. Hydrol., 572, 364–379, https://doi.org/10.1016/j.jhydrol.2019.03.003, 2019.
Szijártó, M. and Galsa, A.: Thermohaline convection in a homogeneous porous medium, Magyar Geofizika, 61, 177–190, 2020.
Szijártó, M., Galsa, A., Tóth, Á., and Mádl-Szőnyi, J.: Numerical analysis of the potential for mixed thermal convection in the Buda Thermal Karst, Hungary, Journal of Hydrology: Regional Studies, 34, 100783, https://doi.org/10.1016/j.ejrh.2021.100783, 2021.
Szijártó, M., Galsa, A., Czauner, B., Erőss, A., Tóth, Á., and Mádl-Szőnyi, J.: Numerical investigation of groundwater ageing and thermal processes in confined unconfined full basins with asymmetric flow pattern: The Buda Thermal Karst, Hungary, Hydrogeol. J., 33, 1047–1065, https://doi.org/10.1007/s10040-025-02908-0, 2025.
Tóth, Á., Havril, T., Simon, Sz., Galsa, A., Santos, F. A. M., Müller, I., and Mádl-Szőnyi, J.: Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction: J. Hydrol., 539, 330–344, https://doi.org/10.1016/j.jhydrol.2016.05.038, 2016.
Tóth, Á., Galsa, A., and Mádl-Szőnyi, J.: Significance of basin asymmetry and regional groundwater flow conditions in preliminary geothermal potential assessment – Implications on extensional geothermal plays, Global Planet. Change, 195, 103344, https://doi.org/10.1016/j.gloplacha.2020.103344, 2020.
Tóth, Á., Baják, P., Szijártó, M., Tiljander, M., Korkka-Niemi, K., Hendriksson, N., and Mádl-Szőnyi, J.: Multimethodological revisit of the surface water and groundwater interaction in the Balaton Highland Region – Implications for the overlooked groundwater component of Lake Balaton, Hungary, Water-Sui, 15, 1006, https://doi.org/10.3390/w15061006, 2023.
Tóth, J.: A theory of groundwater motion in small drainage basins in central Alberta, Canada, J. Geophys. Res., 67, 4375–4387, https://doi.org/10.1029/JZ067i011p04375, 1962.
Tóth, J.: A theoretical analysis of groundwater flow in small drainage basin, J. Geophys. Res., 68, 4795–4812, https://doi.org/10.1029/JZ068i016p04795, 1963.
Tóth, J.: Groundwater as a geologic agent: An overview of the causes, processes, and manifestations, Hydrogeol. J., 7, 1–14, https://doi.org/10.1007/s100400050176, 1999.
Tóth, J.: Gravitational systems of groundwater flow: theory, evaluation, utilization, Cambridge University Press, UK, 297 pp., ISBN 978-0-521-88638-3, 2009.
Tóthi, T., Markó, Á., Szilágyi, I., and Mádl-Szőnyi, J.: Geological risk analysis of geothermal developments in the Buda thermal karst area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5687, https://doi.org/10.5194/egusphere-egu24-5687, 2024.
Trásy-Havril, T., Szkolnikovics-Simon, Sz., and Mádl-Szőnyi, J.: How complex groundwater flow systems respond to climate change induced recharge reduction?, Water-Sui, 14, 3026, https://doi.org/10.3390/w14193026, 2022.
Tsypin, M., Cacace, M., Guse, B., Güntner, A., and Scheck-Wenderoth, M.: Modeling the influence of climate on groundwater flow and heat regime in Brandenburg (Germany), Frontiers in Water, 6, 1353394, https://doi.org/10.3389/frwa.2024.1353394, 2024.
Voss, C. I., Simmons, C. T., and Robinson, N. I.: Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box, Hydrogeol. J., 18, 5–23, https://doi.org/10.1007/s10040-009-0556-6, 2010.
Wang, J.-Z., Jiang, X.-W., Wan, L., Wörman, A., Wang, H., Wang, X.-S., and Li, H.: An analytical study on artesian flow conditions in unconfined-aquifer drainage basins, Water Resour. Res., 51, 8658–8667, https://doi.org/10.1002/2015WR017104, 2015.
Wang, X. S., Jiang, X.-W., Wan, L., Ge, S., and Li, H.: A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability, Water Resour. Res., 47, W09603, https://doi.org/10.1029/2011WR010507, 2011.
Weatherill, D., Simmons, C. T., Voss, C. I., and Robinson, N. I.: Testing density-dependent groundwater models: two-dimensional steady state unstable convection in infinite, finite and inclined porous layers, Adv. Water Resour., 27, 547–562, https://doi.org/10.1016/j.advwatres.2004.01.003, 2004.
Weisbrod, N., Yechieli, Y., Shandalov, S., and Lensky, N.: On the viscosity of natural hyper-saline solutions and its importance: The Dead Sea brines, J. Hydrol., 532, 46–51, https://doi.org/10.1016/j.jhydrol.2015.11.036, 2016.
Wendebourg, J., Biteau, J.-J., and Grosjean, Y.: Hydrodynamics and hydrocarbon trapping: Concepts, pitfalls and insights from case studies, Mar. Petrol. Geol., 96, 190–201, https://doi.org/10.1016/j.marpetgeo.2018.05.015, 2018.
Winter, T. C. and Pfannkuch, H. O.: Effect of anisotropy and groundwater system geometry on seepage through lakebeds 2. Numerical simulation analysis, J. Hydrol., 75, 239–253, https://doi.org/10.1016/0022-1694(84)90052-0, 1984.
Wooding, R. A.: Steady state free thermal convection of liquid in a saturated permeable medium, J. Fluid Mech., 2, 273–285, https://doi.org/10.1017/S0022112057000129, 1957.
Yu, C., Shi, H., Miao, Q., Gonçalves, J. M., Dou, X., Hu, Z., Hou, C., Zhao, Y., and Zhang, H.: Impact of irrigation on soil water balance and salinity at the boundaries of cropland, wasteland and fishponds under a cropland–wasteland–fishpond system, Agronomy, 14, 2110, https://doi.org/10.3390/agronomy14092110, 2024.
Zech, A., Zehner, B., Kolditz, O., and Attinger, S.: Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin, J. Hydrol., 532, 90–101, https://doi.org/10.1016/j.jhydrol.2015.11.030, 2016.
Zhang, X., Jiao, J. J., Li, H., Luo, X., and Kuang, X.: Effects of downward intrusion of saline water on nested groundwater flow systems, Water Resour. Res., 56, e2020WR028377, https://doi.org/10.1029/2020WR028377, 2020.
Zhang, Z.-Y., Jiang, X.-W., Wang, X.-S., Wan, L., and Wang, J.-Z.: A numerical study on the occurrence of flowing wells in the discharge area of basins due to the upward hydraulic gradient induced wellbore flow, Hydrol. Process., 32, 1682–1694, https://doi.org/10.1002/hyp.11623, 2018.
Zimmerman, W. B. J.: Multiphysics Modeling with Finite Element Methods, World Scientific Publishing Company, Singapore, 432 pp., ISBN 9812568433, https://doi.org/10.1142/6141, 2006.
Short summary
Understanding groundwater flow is crucial for both environmental and economic reasons. In our study, the dynamic interaction of the forces driving groundwater flow is presented, partly in synthetic models and partly in a real deep geothermal reservoir. We point out that ignoring certain driving forces can lead to oversimplification of groundwater flow and even misinterpretation of the phenomena, causing environmental problems or economic losses.
Understanding groundwater flow is crucial for both environmental and economic reasons. In our...