Articles | Volume 29, issue 16
https://doi.org/10.5194/hess-29-3957-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3957-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping mining-affected water pollution in China: status, patterns, risks, and implications
Ziyue Yin
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Jian Song
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Dianguang Liu
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Yun Yang
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Yuanyuan Sun
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Jichun Wu
Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Related authors
No articles found.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 24, 5903–5917, https://doi.org/10.5194/hess-24-5903-2020, https://doi.org/10.5194/hess-24-5903-2020, 2020
Short summary
Short summary
A new criterion (χi) is proposed to estimate representative elementary volume (REV) of a translucent material based on light transmission techniques. This study is essential for quantitative investigation of the scale effect of porous media and contaminant transformation. The fluid and contaminant migration and transform in porous media can be simulated accurately according to the REV estimation results using the light transmission technique and the appropriate criterion χi.
Cited articles
Abraitis, P. K., Pattrick, R. A. D., and Vaughan, D. J.: Variations in the compositional, textural and electrical properties of natural pyrite: A review, Int. J. Miner. Process., 74, 41–59, https://doi.org/10.1016/j.minpro.2003.09.002, 2004.
Acharya, B. S. and Kharel, G.: Acid mine drainage from coal mining in the United States – An overview, J. Hydrol., 588, 125061, https://doi.org/10.1016/j.jhydrol.2020.125061, 2020.
Ai, Y. L., Chen, H. P., Chen, M. F., Huang, Y., Han, Z. T., Liu, G., Gao, X. B., Yang, L. H., Zhang, W. Y., Jia, Y. F., and Li, J.: Characteristics and treatment technologies for acid mine drainage from abandoned coal mines in major coal-producing countries, J. China Coal Soc., 48, 4521–4535, https://doi.org/10.13225/j.cnki.jccs.2022.1846, 2023 (in Chinese with English abstract).
Blanchard, M., Alfredsson, M., Brodholt, J., Wright, K., Richard, C., and Catlow, A.: Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study, Geochim. Cosmochim. Ac., 71, 624–630, https://doi.org/10.1016/j.gca.2006.09.021, 2007.
Blowes, D. W., Ptacek, C. J., Jambor, J. L., Weisener, C. G., Paktunc, D., Gould W. D., and Johnson, D. B.: The geochemistry of acid mine drainage, Treatise on Geochemistry, 2nd edn., 11, 131–190, https://doi.org/10.1016/B978-0-08-095975-7.00905-0, 2014.
Chen, D., Chen, Y.-P., and Lin, Y.: Heavy rainfall events following the dry season elevate metal contamination in mining-impacted rivers: A case study of Wenyu River, Qinling, China, Arch. Environ. Contam. Toxicol., 81, 335–345, https://doi.org/10.1007/s00244-021-00870-y, 2021.
Chen, J. P., Zhang, Y., Wang, J. X., Xiao, K. Y., Lou, D. B., Ding, J. H., Yin, J. N., and Xiang, J.: On present situation and potential analysis of copper resources in China, J. Geol., 37, 358–365, https://doi.org/10.3969/j.issn.1674-3636.2013.03.358, 2013 (in Chinese with English abstract).
Cheng, S.: Heavy metal pollution in China: origin, pattern and control, Environ. Sci. Pollut. Res., 10, 192–198, https://doi.org/10.1065/espr2002.11.141.1, 2003.
Cui, L., Wang, X. N., Li, J., Gao, X. Y., Zhang, J. W., and Liu, Z. T.: Ecological and health risk assessments and water quality criteria of heavy metals in the Haihe River, Environ. Pollut., 290, 117971, https://doi.org/10.1016/j.envpol.2021.117971, 2021.
Dippong, T., Resz, M.-A., Tănăselia, C., and Cadar, O.: Assessing microbiological and heavy metal pollution in surface waters associated with potential human health risk assessment at fish ingestion exposure, J. Hazard. Mater., 476, 135187, https://doi.org/10.1016/j.jhazmat.2024.135187, 2024.
Dong, F., Yin, H., Cheng, W., Li, Y., Qiu, M., Zhang, C., Tang, R., Xu, G., and Zhang, L.: Study on water inrush pattern of Ordovician limestone in North China Coalfield based on hydrochemical characteristics and evolution processes: A case study in Binhu and Wangchao Coal Mine of Shandong Province, China, J. Clean. Product., 380, 134954, https://doi.org/10.1016/j.jclepro.2022.134954, 2022.
Feng, Q., Li, T., Qian, B., Zhou, L., Gao, B., and Yuan, T.: Chemical characteristics and utilization of coal mine drainage in China, Mine Water Environ., 33, 276–286, https://doi.org/10.1007/s10230-014-0271-y, 2014.
Feng, S., Deng, S., Tang, Y., Liu, Y., Yang, Y., Xu, S., Tang, P., Lu, Y., Duan, Y., Wei, J., Liang, G., Pu, Y., Chen, X., Shen, M., and Yang, F.: Microcystin-LR combined with cadmium exposures and the risk of chronic kidney disease: a case-control study in central China, Environ. Sci. Technol., 56, 15818–15827, https://doi.org/10.1021/acs.est.2c02287, 2022.
Gu, D. Z., Li, J. F., Cao, Z. G., Wu, B. Y., Jiang, B. B., Yang, Y., Yang, J., and Chen, Y. P.: Technology and engineering development strategy of water protection and utilization of coal mine in China, J. China Coal Soc., 46, 3079–3089, https://doi.org/10.13225/j.cnki.jccs.2021.0917, 2021 (in Chinese with English abstract).
Gu, Y. G., Li, Q. S., Fang, J. H., He, B. Y., Fu, H. B., and Tong, Z. J.: Identification of heavy metals sources in the reclaimed farmland soils of the pearl estuary in China using a multivariate geostatistical approach, Ecotox. Environ. Saf., 105, 7–12, https://doi.org/10.1016/j.ecoenv.2014.04.003, 2014.
Gujre, N., Rangan, L., and Mitra, S.: Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes, Chemosphere, 271, 129573, https://doi.org/10.1016/j.chemosphere.2021.129573, 2021.
Gunson, A. J. and Jian, Y.: Artisanal mining in the People's Republic of China, International Institute of Environment and Development, https://www.iied.org/g00719 (last access: 17 August 2025), 2001.
Havig, J. R., Grettenberger, C., and Hamilton, T. L.: Geochemistry and microbial community composition across a range of acid mine drainage impact and implications for the Neoarchean-Paleoproterozoic transition, J. Geophys. Res.-Biogeo., 122, 19, https://doi.org/10.1002/2016JG003594, 2017.
He, B., Yun, Z. J., Shi, J. B., and Jiang, G. B.: Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity, Chin. Sci. Bull., 58, 134–140, https://doi.org/10.1007/s11434-012-5541-0, 2013.
He, M., Wang, Z., and Tang, H.: The chemical, toxicological and ecological studies in assessing the heavy metal pollution in Le An River, China, Water Res., 32, 510–518, https://doi.org/10.1016/S0043-1354(97)00229-7, 1998.
Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., and Zhao, X.: Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis, Environ. Pollut., 330, 121803, https://doi.org/10.1016/j.envpol.2023.121803, 2023.
Hou, Z., Huang, L., Zhang, S., Han, X., Xu, J., and Li, Y.: Identification of groundwater hydrogeochemistry and the hydraulic connections of aquifers in a complex coal mine, J. Hydrol., 628, 130496, https://doi.org/10.1016/j.jhydrol.2023.130496, 2024.
Hu, H., Jin, Q., and Kavan, P.: A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures, Sustainability, 6, 5820–5838, https://doi.org/10.3390/su6095820, 2014.
Hu, R. Z., Liu, J. M., and Zhai, M. G.: Mineral resources science in China: a roadmap to 2050, Science Press, Beijing, https://doi.org/10.1007/978-3-642-05344-3, 2009.
Ighalo, J. O. and Adeniyi, A. G.: A comprehensive review of water quality monitoring and assessment in Nigeria, Chemosphere 260, 127569, https://doi.org/10.1016/j.chemosphere.2020.127569, 2020.
Ighalo, J. O., Kurniawan, S. B., Iwuozor, K. O., Aniagor, C. O., Ajala, O. J., Oba, S. N., Iwuchukwu, F. U., Ahmadi, S., and Igwegbe, C. A.: A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD), Process Safe. Environ. Protect., 157, 37–58, https://doi.org/10.1016/j.psep.2021.11.008, 2022.
Jiang, C. F., Gao, X. B., Hou, B. J., Zhang, S. T., Zhang, J. Y., Li, C. C., and Wang, W. Z.: Occurrence and environmental impact of coal mine goaf water in karst areas in China, J. Clean. Prod., 275, 123813, https://doi.org/10.1016/j.jclepro.2020.123813, 2020.
Kumar, V., Paul, D., and Kumar, S.: Acid mine drainage from coal mines in the eastern Himalayan sub-region: Hydrogeochemical processes, seasonal variations and insights from hydrogen and oxygen stable isotopes, Environ. Res., 252, 119086, https://doi.org/10.1016/j.envres.2024.119086, 2024.
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., and Huang, L.: A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Sci. Total Environ., 468–469, 843–853, https://doi.org/10.1016/j.scitotenv.2013.08.090, 2014.
Liu, T., Yuan, X., Luo, K., Xie, C., and Zhou, L.: Molecular engineering of a new method for effective removal of cadmium from water, Water Res., 253, 121326, https://doi.org/10.1016/j.watres.2024.121326, 2024.
Liu, X., Shi, H., Bai, Z., Zhou, W., Liu, K., Wang, M., and He, Y.: Heavy metal concentrations of soils near the large opencast coal mine pits in China, Chemosphere, 244, 125360, https://doi.org/10.1016/j.chemosphere.2019.125360, 2020.
Ma, R., Gao, J., Guan, C., and Zhang, B.: Coal mine closure substantially increases terrestrial water storage in China, Commun. Earth Environ., 5, 418, https://doi.org/10.1038/s43247-024-01589-z, 2024.
Meng, F., Cao, R., Zhu, X., Zhang, Y., Liu, M., Wang, J., Chen, J., and Geng, N.: A nationwide investigation on the characteristics and health risk of trace elements in surface water across China, Water Res., 250, 121076, https://doi.org/10.1016/j.watres.2023.121076, 2024.
Moodley, I., Sheridan, C. M., Kappelmeyer, U., and Akcil, A.: Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products, Miner. Eng., 126, 207–220, https://doi.org/10.1016/j.mineng.2017.08.008, 2018.
Qu, S., Liang, X., Liao, F., Mao, H., Xiao, B., Duan, L., Shi, Z., Wang, G., and Yu, R.: Geochemical fingerprint and spatial pattern of mine water quality in the Shaanxi-Inner Mongolia Coal Mine Base, Northwest China, Sci. Total Environ., 854, 158812, https://doi.org/10.1016/j.scitotenv.2022.158812, 2023.
Rui, L., Han, W., Jing, D., Fu, W., and Yi, L.: Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants, Sci. Rep., 7, 1–9, https://doi.org/10.1038/srep46545, 2017.
Sahoo, K. and Sharma, A.: Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: adding new paradigms to the links with diseases, Apoptosis, 28, 277–292, https://doi.org/10.1007/s10495-022-01806-0, 2023.
Shi, J., Zhao, D., Ren, F., and Huang, L.: Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment, Sci. Total Environ., 871, 161768, https://doi.org/10.1016/j.scitotenv.2023.161768, 2023.
Sun, J., Tang, C., Wu, P., Liu, C., and Zhang, R.: Migration of Cu, Zn, Cd and As in epikarst water affected by acid mine drainage at a coalfield basin, Xingren, Southwest China, Environ. Earth Sci., 69, 2623–2632, https://doi.org/10.1007/s12665-012-2083-3, 2013.
Sun, Y. J., Chen, G., Xu, Z. M., Yuan, H. Q., Zhang, Y. Z., Zhou, L. J., Wang, X., Zhang, C. H., and Zheng, J. M.: Research progress of water environment, treatment and utilization in coal mining areas of China, J. China Coal Soc., 45, 304–316, https://doi.org/10.13225/j.cnki.jccs.YG19.1654, 2020 (in Chinese with English abstract).
Sun, Y. J., Zhang, L., Xu, Z. M., Chen, G., Zhao, X. M., Li, X., Gao, Y. T., Zhang, S. G., and Zhu, L. L.: Multi-field action mechanism and research progress of coal mine water quality formation and evolution, J. China Coal Soc., 47, 423–437, https://doi.org/10.13225/j.cnki.jccs.YG21.1937, 2022 (in Chinese with English abstract).
Sun, Y. J., Guo, J., Xu, Z. M., Zhang, L., Chen, G., Xiong, X. F., Hua, J. F., Mu, L. J., and Wu, W. X.: Spatial distribution characteristics of mine water quality in coal mining areas of China and technological approaches for mine water treatment, J. China Coal Soc., 50, 584–599, https://doi.org/10.13225/j.cnki.jccs.YG24.1547, 2025 (in Chinese with English abstract).
Tang, Y. G., He, X., Cheng, A. G., Li, W. W., Deng, X. J., Wei, Q., and Li, L.: Occurrence and sedimentary control of sulfur in coals of China, J. China Coal Soc., 40, 1977–1988, https://doi.org/10.13225/j.cnki.jccs.2015.0434, 2015 (in Chinese with English abstract).
USEPA: Risk assessment guidance for superfund, Volume I: Human health evaluation manual, US Environment Protection Agency, Washington DC, EPA/540/R/99/005, 2004.
USEPA: Exposure factors handbook, US Environment Protection Agency, Washington DC, EPA/600/R-09/052F, 2011.
Wang, M., Wang, X., Zhou, S., Chen, Z., Chen, M., Feng, S., Li, J., Shu, W., and Cao, B.: Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem, Water Res., 243, 120343, https://doi.org/10.1016/j.watres.2023.120343, 2023.
Wang, Y., Dong, R., Zhou, Y., and Luo, X.: Characteristics of groundwater discharge to river and related heavy metal transportation in a mountain mining area of Dabaoshan, Southern China, Sci. Total Environ., 679, 346–358, https://doi.org/10.1016/j.scitotenv.2019.04.273, 2019.
Wei, J., Hu, K., Xu, J., Liu, R., Gong, Z., and Cai, Y.: Determining heavy metal pollution in sediments from the largest impounded lake in the eastern route of China's South-to-North Water Diversion Project: Ecological risks, sources, and implications for lake management, Environ. Res., 24, 114118, https://doi.org/10.1016/j.envres.2022.114118, 2022.
Xiao, T., Boyle, D., Guha, J., Rouleau, A., Hong, Y., and Zheng, B.: Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China, Appl. Geochem., 18, 675–691, https://doi.org/10.1016/S0883-2927(02)00154-3, 2003.
Yin, S., Wang, L., Kabwe, E., Chen, X., Yan, R., An, K., Zhang, L., and Wu, A.: Copper bioleaching in China: Review and prospect, Minerals, 8, 32, https://doi.org/10.3390/min8020032, 2018.
Yu, J., Liu, X., Yang, B., Li, X., Wang, P., Yuan, B., Wang, M., Liang, T., Shi, P., Li, R., Cheng, H., and Li, F.: Major influencing factors identification and probabilistic health risk assessment of soil potentially toxic elements pollution in coal and metal mines across China: A systematic review, Ecotoxicol. Environ. Saf., 274, 116231, https://doi.org/10.1016/j.ecoenv.2024.116231, 2024.
Zhang, L.-Z., Xing, S.-P., Huang, F.-Y., Xiu, W., Rensing, C., Zhao, Y., and Guo, H. M.: Metabolic coupling of arsenic, carbon, nitrogen, and sulfur in high arsenic geothermal groundwater: Evidence from molecular mechanisms to community ecology, Water Res., 249, 120953, https://doi.org/10.1016/j.watres.2023.120953, 2024.
Zhang, M. C., Chao, L. J., Yuan, L. P., Liang, W. J., Zheng, X., and Sun, K. F.: Summarize on the lead and zinc ore resources of the world and China, China Mining Mag., 25, 41–45, 2016a (in Chinese with English abstract).
Zhang, X., Li, X., and Gao, X.: Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China, Environ. Sci. Pollut. Res., 23, 6286–6299, https://doi.org/10.1007/s11356-015-5838-z, 2016b.
Short summary
Mining activities threaten aquatic ecosystems, soil ecosystems, and human health worldwide. This study establishes a high-quality database and a national 0.5° gridded dataset to reveal the status and spatial pattern of mining-affected water pollution, human health risks, and potential multifaceted challenges in China. It provides in-depth insights to guide policymakers in designing differentiated management strategies for the sustainable development of mines.
Mining activities threaten aquatic ecosystems, soil ecosystems, and human health worldwide. This...