Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3809-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3809-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-sectoral and systemic drought risk in forested cold climates: stakeholder-informed vulnerability factors from Sweden
Department of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Malgorzata Blicharska
Department of Earth Sciences, Program for Natural Resources and Sustainable Development, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Thomas Grabs
Department of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Claudia Teutschbein
Department of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Related authors
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Nat. Hazards Earth Syst. Sci., 25, 3381–3395, https://doi.org/10.5194/nhess-25-3381-2025, https://doi.org/10.5194/nhess-25-3381-2025, 2025
Short summary
Short summary
Utilizing a survey that includes respondents from seven societal sectors, the role of water dependency in drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture or groundwater and surface water). The results highlight the importance of accounting for water dependency and clearly defining the drought hazard in drought vulnerability or risk assessments.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Nat. Hazards Earth Syst. Sci., 25, 3381–3395, https://doi.org/10.5194/nhess-25-3381-2025, https://doi.org/10.5194/nhess-25-3381-2025, 2025
Short summary
Short summary
Utilizing a survey that includes respondents from seven societal sectors, the role of water dependency in drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture or groundwater and surface water). The results highlight the importance of accounting for water dependency and clearly defining the drought hazard in drought vulnerability or risk assessments.
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Cited articles
Acosta, L. and Galli, F.: Crisis Probability Curves (CPCs): A Model for Assessing Vulnerability Thresholds Across Space and Over Time, J. Environ. Sci. Manag., 16, 36–49, https://doi.org/10.47125/jesam/2013_1/05, 2013.
Adger, W. N.: Vulnerability, Global Environ. Chang., 16, 268–281, https://doi.org/10.1016/j.gloenvcha.2006.02.006, 2006.
Alcamo, J., Acosta-Michlik, L., Carius, A., Eierdanz, F., Klein, R., Kromker, D., and Tanzler, D.: A new approach to quantifying and comparing vulnerability to drought, Reg. Environ. Change, 8, 137–149, https://doi.org/10.1007/s10113-008-0065-5, 2008.
Asare-Kyei, D. K., Kloos, J., and Renaud, F. G.: Multi-scale participatory indicator development approaches for climate change risk assessment in West Africa, Int. J. Disast. Risk Re., 11, 13–34, https://doi.org/10.1016/j.ijdrr.2014.11.001, 2015.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016.
Chen, D., Zhang, P., Seftigen, K., Ou, T., Giese, M., and Barthel, R.: Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective, Geogr. Ann. A, 103, 103–131, https://doi.org/10.1080/04353676.2020.1841410, 2021.
Ciurean, R., Schroter, D., and Glade, T.: Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction, in: Approaches to Disaster Management – Examining the Implications of Hazards, Emergencies and Disasters, edited by: Tiefenbacher, J., InTech, https://doi.org/10.5772/55538, 2013.
Cuesta, A., Alvear, D., Carnevale, A., and Amon, F.: Gender and Public Perception of Disasters: A Multiple Hazards Exploratory Study of EU Citizens, Safety, 8, 59, https://doi.org/10.3390/safety8030059, 2022.
Dias, E. M. S., Pessoa, Z. S., and Teixeira, R. L. P.: Adaptive governace and water security in the context of climate change in the semi-arid, Mercator, 21, 1–11, https://doi.org/10.4215/rm2022.e21025, 2022.
Englund, M., Vieira Passos, M., André, K., Gerger Swartling, Å., Segnestam, L., and Barquet, K.: Constructing a social vulnerability index for flooding: insights from a municipality in Sweden, Front. Clim., 5, 1038883, https://doi.org/10.3389/fclim.2023.1038883, 2023.
Engström, J., Jafarzadegan, K., and Moradkhani, H.: Drought Vulnerability in the United States: An Integrated Assessment, Water, 12, 2033, https://doi.org/10.3390/w12072033, 2020.
Erfurt, M., Glaser, R., and Blauhut, V.: Changing impacts and societal responses to drought in southwestern Germany since 1800, Reg. Environ. Change, 19, 2311–2323, https://doi.org/10.1007/s10113-019-01522-7, 2019.
Falkenmark, M. and Rockström, J.: The New Blue and Green Water Paradigm: Breaking New Ground for Water Resources Planning and Management, J. Water Resour. Plann. Manage., 132, 129–132, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129), 2006.
Faranda, D., Pascale, S., and Bulut, B.: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/acbc37, 2023.
Fekete, A.: Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance, Nat. Hazards, 61, 1161–1178, https://doi.org/10.1007/s11069-011-9973-7, 2012.
Fleming, C. S., Regan, S. D., Freitag, A., and Burkart, H.: Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California, Nat. Hazards, 115, 2069–2095, https://doi.org/10.1007/s11069-022-05628-w, 2023.
Fuchs, S. and Thaler, T. (Eds.): 2 – Vulnerability, in: Vulnerability and Resilience to Natural Hazards, Cambridge University Press, Cambridge, iii–iv, https://doi.org/10.1017/9781316651148, 2018
Füssel, H.-M.: Vulnerability: A generally applicable conceptual framework for climate change research, Global Environ. Chang., 17, 155–167, https://doi.org/10.1016/j.gloenvcha.2006.05.002, 2007.
González Tánago, I., Urquijo, J., Blauhut, V., Villarroya, F., and De Stefano, L.: Learning from experience: a systematic review of assessments of vulnerability to drought, Nat. Hazards, 80, 951–973, https://doi.org/10.1007/s11069-015-2006-1, 2016.
Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., and Sebesvari, Z.: Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda, Environ. Res. Lett., 14, 083002, https://doi.org/10.1088/1748-9326/ab225d, 2019.
Hagenlocher, M., Naumann, G., Meza, I., Blauhut, V., Cotti, D., Döll, P., Ehlert, K., Gaupp, F., Van Loon, A. F., Marengo, J. A., Rossi, L., Sabino Siemons, A. S., Siebert, S., Tsehayu, A. T., Toreti, A., Tsegai, D., Vera, C., Vogt, J., and Wens, M.: Tackling Growing Drought Risks – The Need for a Systemic Perspective, Earths Future, 11, e2023EF003857, https://doi.org/10.1029/2023EF003857, 2023.
Hung, H.-C. and Chen, L.-Y.: Incorporating stakeholders' knowledge into assessing vulnerability to climatic hazards: application to the river basin management in Taiwan, Climatic Change, 120, 491–507, https://doi.org/10.1007/s10584-013-0819-z, 2013.
Hurlbert, M. and Gupta, J.: Adaptive Governance, Uncertainty, and Risk: Policy Framing and Responses to Climate Change, Drought, and Flood, Risk Anal., 36, 339–356, https://doi.org/10.1111/risa.12510, 2016.
Hurlbert, M. and Montana, E.: Dimensions of adaptive water governance and drought in Argentina and Canada, Journal of Sustainable Development, 8, 120–137, https://doi.org/10.5539/jsd.v8n1p120, 2015.
IPCC: Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st edn., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2023.
Jamshed, A., Rana, I. A., Birkmann, J., McMillan, J. M., and Kienberger, S.: A bibliometric and systematic review of the Methods for the Improvement of Vulnerability Assessment in Europe framework: A guide for the development of further multi-hazard holistic framework, Jàmbá Journal of Disaster Risk Studies, 15, a1486, https://doi.org/10.4102/jamba.v15i1.1486, 2023.
Jordbruksverket: Skörd av spannmål, trindsäd, oljeväxter, potatis och slåttervall 2018, Serie JO – Jordbruk, skogsbruk och fiske, JO 16 SM 1901, Jordbruksverket, Jönköping, Sweden, ISSN 1654-4137, https://webbutiken.jordbruksverket.se/sv/artiklar/jo16sm1901.html (last access: 11 August 2025), 2019a.
Jordbruksverket: Långsiktiga effekter av torkan 2018 och hur jordbruket kan bli mer motståndskraftigt mot extremväder, RA19:13, Jordbruksverket, Jönköping, Sweden, ISSN 1102-3007, https://webbutiken.jordbruksverket.se/sv/artiklar/ra1913.html (last access: 11 August 2025), 2019b.
Kassambara A.: rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R package version 0.7.2, CRAN [code], https://doi.org/10.32614/CRAN.package.rstatix, 2023.
Kim, H., Park, J., Yoo, J., and Kim, T.-W.: Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea, J. Hydro-Environ. Res., 9, 28–35, https://doi.org/10.1016/j.jher.2013.07.003, 2015.
Martín, Y., Rodrigues Mimbrero, M., and Zúñiga-Antón, M.: Community vulnerability to hazards: introducing local expert knowledge into the equation, Nat. Hazards, 89, 367–386, https://doi.org/10.1007/s11069-017-2969-1, 2017.
McEwen, L., Bryan, K., Black, A., Blake, J., and Afzal, M.: Science-Narrative Explorations of “Drought Thresholds” in the Maritime Eden Catchment, Scotland: Implications for Local Drought Risk Management, Front. Environ. Sci., 9, 589980, https://doi.org/10.3389/fenvs.2021.589980, 2021.
Melo, F. P. L., Parry, L., Brancalion, P. H. S., Pinto, S. R. R., Freitas, J., Manhães, A. P., Meli, P., Ganade, G., and Chazdon, R. L.: Adding forests to the water–energy–food nexus, Nat. Sustain, 4, 85–92, https://doi.org/10.1038/s41893-020-00608-z, 2020.
Meza, I., Hagenlocher, M., Naumann, G., Vogt, J., and Frischen, J.: Drought vulnerability indicators for global-scale drought risk assessments: global expert survey results report, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/73844, 2019.
Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., Nouri, H., Gerdener, H., Popat, E., Frischen, J., Naumann, G., Vogt, J. V., Walz, Y., Sebesvari, Z., and Hagenlocher, M.: Global-scale drought risk assessment for agricultural systems, Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020, 2020.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Mızrak, S. and Aslan, R.: Disaster Risk Perception of University Students, Risk Hazard and Crisis Pub Pol, 11, 411–433, https://doi.org/10.1002/rhc3.12202, 2020.
Moreira, L. L., Vanelli, F. M., Schwamback, D., Kobiyama, M., and De Brito, M. M.: Sensitivity analysis of indicator weights for the construction of flood vulnerability indexes: A participatory approach, Front. Water, 5, 970469, https://doi.org/10.3389/frwa.2023.970469, 2023.
Moshir Panahi, D., Blauhut, V., Raziei, T., and Zahabiyoun, B.: Drought vulnerability range assessment: A dynamic and impact-driven method for multiple vulnerable systems, Int. J. Disast. Risk Re., 91, 103701, https://doi.org/10.1016/j.ijdrr.2023.103701, 2023.
MSB: MSB:s arbete med skogsbränderna 2018: tillsammans kunde vi hantera en extrem skogsbrandssäsong, Myndigheten för samhällsskydd och beredskap (MSB), Karlstad, 37 pp., ISBN 978-91-7383-875-7, 2018.
MSB: Torkan 2018, https://www.krisinformation.se/detta-kan-handa/handelser-och-storningar/2018/torkan-2018, last access: 20 March 2025.
Nelson, R., Howden, M., and Smith, M. S.: Using adaptive governance to rethink the way science supports Australian drought policy, Environ. Sci. Policy, 11, 588–601, https://doi.org/10.1016/j.envsci.2008.06.005, 2008.
O'Brien, K., Sygna, L., and Haugen, J. E.: Vulnerable or Resilient? A Multi-Scale Assessment of Climate Impacts and Vulnerability in Norway, Climatic Change, 64, 193–225, https://doi.org/10.1023/B:CLIM.0000024668.70143.80, 2004.
O'Brien, K., Eriksen, S., Nygaard, L. P., and Schjolden, A.: Why different interpretations of vulnerability matter in climate change discourses, Clim. Policy, 7, 73–88, https://doi.org/10.1080/14693062.2007.9685639, 2007.
Orru, K., Hansson, S., Gabel, F., Tammpuu, P., Krüger, M., Savadori, L., Meyer, S. F., Torpan, S., Jukarainen, P., Schieffelers, A., Lovasz, G., and Rhinard, M.: Approaches to “vulnerability” in eight European disaster management systems, Disasters, 46, 742–767, https://doi.org/10.1111/disa.12481, 2022.
Ortega-Gaucin, D., De La Cruz Bartolón, J., and Castellano Bahena, H. V.: Drought Vulnerability Indices in Mexico, Water, 10, 1671, https://doi.org/10.3390/w10111671, 2018.
Pappné Vancsó, J., Hoschek, M., and Jankó, F.: Climate change in Hungarian rural society: Assessment of adaptive capacity, Acta Silvatica et Lignaria Hungarica, 12, 105–116, https://doi.org/10.1515/aslh-2016-0009, 2016.
Radeva, K. and Nikolova, N.: Hydrometeorological Drought Hazard and Vulnerability Assessment for Northern Bulgaria, Geographica Pannonica, 24, 112–123, https://doi.org/10.5937/gp24-25074, 2020.
Raheem, N., Cravens, A. E., Cross, M. S., Crausbay, S., Ramirez, A., McEvoy, J., Zoanni, D., Bathke, D. J., Hayes, M., Carter, S., Rubenstein, M., Schwend, A., Hall, K., and Suberu, P.: Planning for ecological drought: Integrating ecosystem services and vulnerability assessment, WIREs Water, 6, e1352, https://doi.org/10.1002/wat2.1352, 2019.
Raikes, J., Smith, T., Baldwin, C., and Henstra, D.: Linking disaster risk reduction and human development, Climate Risk Management, 32, 100291, https://doi.org/10.1016/j.crm.2021.100291, 2021.
R Core Team: R: A Language and Environment for Statistical computing, R Foundation for Statistical Computing [code], https://www.R-project.org/, last access: 10 April 2024.
Rufat, S. and Metzger, P.: Vulnerability, Territory, Population: From Critique to Public Policy, 1st edn., Wiley, https://doi.org/10.1002/9781394299249, 2024.
Shiravand, H. and Bayat, A.: Vulnerability and drought risk assessment in Iran based on fuzzy logic and hierarchical analysis, Theor. Appl. Climatol., 151, 1323–1335, https://doi.org/10.1007/s00704-022-04323-x, 2023.
Siegrist, M. and Árvai, J.: Risk Perception: Reflections on 40 Years of Research, Risk Anal., 40, 2191–2206, https://doi.org/10.1111/risa.13599, 2020.
Sjökvist, E., Abdoush, D., and Axén, J.: Sommaren 2018 – en glimt av framtiden?, Klimatologi, No. 52, SMHI, Norrköping, Sweden, ISSN 1654-2258, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/2019-06-16-sommaren-2018---en-glimt-av-framtiden (last access: 11 August 2025), 2019.
SLU: Forest statistics 2015, Official Statistics of Sweden Swed. Univ. Agric. Sci. (SLU), Umeå, Swed., https://res.slu.se/id/publ/68370 (last access: 11 August 2025), 2015.
Statistics Sweden (SCB): Water use in Sweden 2020, MI27 – Water withdrawal and water use in Sweden 2022:1, Statistics Sweden, Stockholm, Sweden, https://www.scb.se/publikation/47285 (last access: 19 March 2025), 2022.
Stefanski, R., Toreti, A., Aich, V., Hagenlocher, M., Lamizana Diallo, B., McDonnell, R., Pulwarty, R. S., Svoboda, M., Tsegai, D., and Wens, M.: Drought resilience demands urgent global actions and cooperation, Nat. Water, https://doi.org/10.1038/s44221-024-00373-9, 2025.
Stenfors, E., Blicharska, M., Grabs, T., and Teutschbein, C.: Droughts in forested ecoregions in cold and continental climates: A review of vulnerability concepts and factors in socio-hydrological systems, WIREs Water, 11, e1692, https://doi.org/10.1002/wat2.1692, 2024.
Stensen, K., Krunegård, A., Rasmusson, K., Matti, B., and Hjerdt, N.: Sveriges vattentillgång utifrån perspektivet vattenbrist och torka – Delrapport 1 i regeringsuppdrag om åtgärder för att motverka vattenbrist i ytvattentäkter, SMHI, ISSN: 0283-7722, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/2019-10-01-sveriges-vattentillgang-utifran-perspektivet-vattenbrist-och-torka (last access: 12 August 2025), 2019.
SVT Nyheter: Torkan slår ut fiskens barnkammare, https://www.svt.se/nyheter/lokalt/halland/fiskdoden-omfattande-i-torrlagda-vattendrag (last access: 20 March 2025), 2018.
Tate, E.: Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis, Nat. Hazards, 63, 325–347, https://doi.org/10.1007/s11069-012-0152-2, 2012.
Tate, E.: Uncertainty Analysis for a Social Vulnerability Index, Ann. Assoc. Am. Geogr., 103, 526–543, https://doi.org/10.1080/00045608.2012.700616, 2013.
Taylor, V., Chappells, H., Medd, W., and Trentmann, F.: Drought is normal: the socio-technical evolution of drought and water demand in England and Wales, 1893–2006, J. Hist. Geogr., 35, 568–591, https://doi.org/10.1016/j.jhg.2008.09.004, 2009.
Teutschbein, C., Quesada Montano, B., Todorović, A., and Grabs, T.: Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations, J. Hydrol.: Regional Studies, 42, 101171, https://doi.org/10.1016/j.ejrh.2022.101171, 2022.
Teutschbein, C., Albrecht, F., Blicharska, M., Tootoonchi, F., Stenfors, E., and Grabs, T.: Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management, Ambio, 52, 1262–1281, https://doi.org/10.1007/s13280-023-01849-w, 2023a.
Teutschbein, C., Jonsson, E., Todorović, A., Tootoonchi, F., Stenfors, E., and Grabs, T.: Future drought propagation through the water-energy-food-ecosystem nexus – A Nordic perspective, J. Hydrol., 617, 128963, https://doi.org/10.1016/j.jhydrol.2022.128963, 2023b.
The Swedish Board of Agriculture (Jordbruksverket): Irrigation and Drainage of Agricultural Land 2023, https://jordbruksverket.se/5.24373fb019342679476ab6.html (last access: 19 March 2025), 2024.
Tidwell, T. L.: Nexus between food, energy, water, and forest ecosystems in the USA, J. Environ. Stud. Sci., 6, 214–224, https://doi.org/10.1007/s13412-016-0367-8, 2016.
Turesson, K., Pettersson, A., De Goër De Herve, M., Gustavsson, J., Haas, J., Koivisto, J., Karagiorgos, K., and Nyberg, L.: The human dimension of vulnerability: A scoping review of the Nordic literature on factors for social vulnerability to climate risks, Int. J. Disast. Risk Re., 100, 104190, https://doi.org/10.1016/j.ijdrr.2023.104190, 2024.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., and Schiller, A.: A framework for vulnerability analysis in sustainability science, P. Natl. Acad. Sci. USA, 100, 8074–8079, https://doi.org/10.1073/pnas.1231335100, 2003.
UNDRR: Global Assessment Report on Disaster Risk Reduction 2019, United Nations, eISBN: 978-92-1-004180-5, 2019.
UNDRR: Special report on drought 2021, United Nations Office for Disaster Risk Reduction, Geneva, 173 pp., ISBN 9789212320274, 2021.
van den Brand, T.: ggh4x: Hacks for 'ggplot2', R package version 0.3.0, CRAN [code], https://CRAN.R-project.org/package=ggh4x (last access: 7 January 2025), 2024.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Vattenuttag: https://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START__MI__MI0902__MI0902D/VattenUttagJord/table/tableViewLayout1/, last access: 31 May 2024.
Wang, T. and Sun, F.: Integrated drought vulnerability and risk assessment for future scenarios: An indicator based analysis, Sci. Total Environ., 900, 165591, https://doi.org/10.1016/j.scitotenv.2023.165591, 2023.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York, USA, ISBN 978-3-319-24277-4, 2016.
Wickham, H., François, R., Henry, L., Müller, K., and Vaughan D.: dplyr: A Grammar of Data Manipulation, R package version 1.1.4, CRAN [code], https://doi.org/10.32614/CRAN.package.dplyr, 2023.
Wilhite, D. A.: A methodology for drought preparedness, Nat. Hazards, 13, 229–252, https://doi.org/10.1007/BF00215817, 1996.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Xu, T., Chen, K., and Li, G.: The more data, the better? Demystifying deletion-based methods in linear regression with missing data, Stat. Interface, 15, 515–526, https://doi.org/10.4310/21-SII717, 2022.
Short summary
Through a survey involving six water-dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates were studied. Results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. Results offer unique insights into the dynamics of drought vulnerability that are valuable for risk assessment, drought plans, and increasing resilience.
Through a survey involving six water-dependent sectors, the relevance and impact of drought...