Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution InSAR regional soil water storage mapping above permafrost
Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
Jingyi Chen
Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
Center of Space Research, University of Texas at Austin, Austin, TX, USA
Earth and Planetary Sciences, University of Texas at Austin, Austin, TX, USA
M. Bayani Cardenas
Earth and Planetary Sciences, University of Texas at Austin, Austin, TX, USA
George W. Kling
Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Related authors
No articles found.
Werner Eugster, James Laundre, Jon Eugster, and George W. Kling
Atmos. Meas. Tech., 13, 2681–2695, https://doi.org/10.5194/amt-13-2681-2020, https://doi.org/10.5194/amt-13-2681-2020, 2020
Short summary
Short summary
Measuring ambient methane concentrations requires expensive optical sensors. The first electrochemical analyzer that shows a response to ambient levels of methane is now available. We present the first long-term deployment of such sensors in an arctic environment (temperatures from −41 to 27 °C). We present a method based on these measurements to convert the signal to methane concentrations (corrected for the effects of air temperature and relative humidity) and ensure long-term stability.
R. M. Cory, K. H. Harrold, B.T. Neilson, and G. W. Kling
Biogeosciences, 12, 6669–6685, https://doi.org/10.5194/bg-12-6669-2015, https://doi.org/10.5194/bg-12-6669-2015, 2015
Short summary
Short summary
This study investigates how sunlight, dissolved organic matter (DOM) concentration and composition, and hydrology interact to control DOM degradation in headwater streams. In Imnavait Creek, a shallow, low-relief stream in the Arctic, DOM degradation by sunlight was limited by light under all conditions. Study results were used to synthesize controls on DOM degradation by sunlight for a river reach, expressed as a function of light attenuation and water residence times.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
A new high-resolution groundwater isoscape for South-East Germany: insights from differences to precipitation
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Estimating long-term groundwater storage and its controlling factors in Alberta, Canada
Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products
Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach
How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions
Statistical analysis to characterize transport of nutrients in groundwater near an abandoned feedlot
Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations
Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description
Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS
Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data
Groundwater use for irrigation – a global inventory
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1968, https://doi.org/10.5194/egusphere-2024-1968, 2024
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between those two compartments of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights to understand the different groundwater recharge patterns on a large scale and eventually for groundwater management.
Pierre Seraphin, Julio Gonçalvès, Bruno Hamelin, Thomas Stieglitz, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 26, 5757–5771, https://doi.org/10.5194/hess-26-5757-2022, https://doi.org/10.5194/hess-26-5757-2022, 2022
Short summary
Short summary
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite gravity data. Spatial heterogeneities regarding the groundwater recharge were identified: (i) irrigation excess is great enough to artificially recharge the aquifer; and (ii) volcanic lava deposits, which cover 8% of the domain, contribute to more than 50% of the total natural recharge. This indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto.
Claire Pascal, Sylvain Ferrant, Adrien Selles, Jean-Christophe Maréchal, Abhilash Paswan, and Olivier Merlin
Hydrol. Earth Syst. Sci., 26, 4169–4186, https://doi.org/10.5194/hess-26-4169-2022, https://doi.org/10.5194/hess-26-4169-2022, 2022
Short summary
Short summary
This paper presents a new validation method for the downscaling of GRACE (Gravity Recovery and Climate Experiment) data. It measures the improvement of the downscaled data against the low-resolution data in both temporal and, for the first time, spatial domains. This validation method offers a standardized and comprehensive framework to interpret spatially and temporally the quality of the downscaled products, supporting future efforts in GRACE downscaling methods.
Víctor Gómez-Escalonilla, Pedro Martínez-Santos, and Miguel Martín-Loeches
Hydrol. Earth Syst. Sci., 26, 221–243, https://doi.org/10.5194/hess-26-221-2022, https://doi.org/10.5194/hess-26-221-2022, 2022
Short summary
Short summary
Many communities in the Sahel rely solely on groundwater. We develop a machine learning technique to map areas of groundwater potential. Algorithms are trained to detect areas where there is a confluence of factors that facilitate groundwater occurrence. Our contribution focuses on using variable scaling to minimize expert bias and on testing our results beyond standard metrics. This approach is illustrated through its application to two administrative regions of Mali.
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Mathias Maillot, Nicolas Flipo, Agnès Rivière, Nicolas Desassis, Didier Renard, Patrick Goblet, and Marc Vincent
Hydrol. Earth Syst. Sci., 23, 4835–4849, https://doi.org/10.5194/hess-23-4835-2019, https://doi.org/10.5194/hess-23-4835-2019, 2019
Soumendra N. Bhanja, Xiaokun Zhang, and Junye Wang
Hydrol. Earth Syst. Sci., 22, 6241–6255, https://doi.org/10.5194/hess-22-6241-2018, https://doi.org/10.5194/hess-22-6241-2018, 2018
Short summary
Short summary
The paper presents groundwater storage conditions in all the major river basins across Alberta, Canada. We used remote-sensing data and investigate their performance using available ground-based data of groundwater level monitoring, storage coefficients, aquifer thickness, and surface water measurements. The water available for groundwater recharge has been studied in detail. Separate approaches have been followed for confined and unconfined aquifers for estimating groundwater storage.
Mohammad Shamsudduha, Richard G. Taylor, Darren Jones, Laurent Longuevergne, Michael Owor, and Callist Tindimugaya
Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, https://doi.org/10.5194/hess-21-4533-2017, 2017
Short summary
Short summary
This study tests the phase and amplitude of GRACE TWS signals in the Upper Nile Basin from five commonly used gridded products (NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS) using in situ data and soil moisture from the Global Land Data Assimilation System. Resolution of changes in groundwater storage (ΔGWS) from GRACE is greatly constrained by the uncertain simulated soil moisture storage and the low amplitude in ΔGWS observed in deeply weathered crystalline rocks in the Upper Nile Basin.
Y. Altchenko and K. G. Villholth
Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, https://doi.org/10.5194/hess-19-1055-2015, 2015
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
P. Gbolo and P. Gerla
Hydrol. Earth Syst. Sci., 17, 4897–4906, https://doi.org/10.5194/hess-17-4897-2013, https://doi.org/10.5194/hess-17-4897-2013, 2013
A. Pryet, N. d'Ozouville, S. Violette, B. Deffontaines, and E. Auken
Hydrol. Earth Syst. Sci., 16, 4571–4579, https://doi.org/10.5194/hess-16-4571-2012, https://doi.org/10.5194/hess-16-4571-2012, 2012
F. Alkhaier, G. N. Flerchinger, and Z. Su
Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, https://doi.org/10.5194/hess-16-1817-2012, 2012
F. Alkhaier, Z. Su, and G. N. Flerchinger
Hydrol. Earth Syst. Sci., 16, 1833–1844, https://doi.org/10.5194/hess-16-1833-2012, https://doi.org/10.5194/hess-16-1833-2012, 2012
U. Mallast, R. Gloaguen, S. Geyer, T. Rödiger, and C. Siebert
Hydrol. Earth Syst. Sci., 15, 2665–2678, https://doi.org/10.5194/hess-15-2665-2011, https://doi.org/10.5194/hess-15-2665-2011, 2011
S. Siebert, J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann
Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, https://doi.org/10.5194/hess-14-1863-2010, 2010
Cited articles
Abe, T., Iwahana, G., Efremov, P. V., Desyatkin, A. R., Kawamura, T., Fedorov, A., Zhegusov, Y., Yanagiya, K., and Tadono, T.: Surface displacement revealed by L-band InSAR analysis in the Mayya area, Central Yakutia, underlain by continuous permafrost, Earth Planets Space, 72, 138, https://doi.org/10.1186/s40623-020-01266-3, 2020. a
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kaab, A., Heim, B., Langer, M., Bornemann, N., and Boike, J.: Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X interferometry, Remote Sens.-Basel, 10, 494, https://doi.org/10.3390/rs10040494, 2018. a, b
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE T. Geosci. Remote, 40, 2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002. a, b
Bond-Lamberty, B., Smith, A. P., and Bailey, V.: Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils, Biogeosciences, 13, 6669–6681, https://doi.org/10.5194/bg-13-6669-2016, 2016. a
Carreno-Luengo, H. and Ruf, C.: Freeze/thaw retrieval over high altitude areas with CYGNSS, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, IEEE, 7807–7810, https://doi.org/10.1109/IGARSS47720.2021.9553238, 2021. a
Carreno-Luengo, H. and Ruf, C. S.: Retrieving freeze/thaw surface state from CYGNSS measurements, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2021.3120932, 2022. a, b
Chen, J. and Zebker, H. A.: Ionospheric artifacts in simultaneous L-band InSAR and GPS observations, IEEE T. Geosci. Remote, 50, 1227–1239, https://doi.org/10.1109/TGRS.2011.2164805, 2012. a
Chen, J., Zebker, H. A., Segall, P., and Miklius, A.: The 2010 slow slip event and secular motion at Kilauea, Hawaii, inferred from TerraSAR-X InSAR data, J. Geophys. Res.-Sol. Ea., 119, 6667–6683, https://doi.org/10.1002/2014JB011156, 2014. a
Chen, J., Wu, Y., O'Connor, M., Cardenas, M. B., Schaefer, K., Michaelides, R., and Kling, G.: Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR, Remote Sens. Environ., 248, 112007, https://doi.org/10.1016/j.rse.2020.112007, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Chen, J., Wu, T., Liu, L., Gong, W., Zwieback, S., Zou, D., Zhu, X., Hu, G., Du, E., Wu, X., Li, R., and Yang, S.: Increased water content in the active layer revealed by regional scale InSAR and independent component analysis on the Central Qinghai Tibet Plateau, Geophys. Res. Lett., 49, e2021GL097586, https://doi.org/10.1029/2021gl097586, 2022. a
Chen, R. H., Michaelides, R. J., Zhao, Y., Huang, L., Wig, E., Sullivan, T. D., Parsekian, A. D., Zebker, H. A., Moghaddam, M., and Schaefer, K. M.: Permafrost dynamics observatory: retrieval of active layer thickness and soil moisture from airborne InSAR and polsar data, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, IEEE, https://doi.org/10.1109/IGARSS47720.2021.9554288, 1444–1447, 2021. a
Chen, R. H., Michaelides, R. J., Zhao, Y., Huang, L., Wig, E., Sullivan, T. D., Parsekian, A. D., Zebker, H. A., Moghaddam, M., and Schaefer, K. M.: Permafrost Dynamics Observatory (PDO): 2. joint retrieval of permafrost active layer thickness and soil moisture from L band InSAR and p band polsar, Earth and Space Science, 10, e2022EA002453, https://doi.org/10.1029/2022ea002453, 2023. a
Daout, S., Doin, M.-P., Peltzer, G., Socquet, A., and Lasserre, C.: Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau, Geophys. Res. Lett., 44, 901–909, https://doi.org/10.1002/2016GL070781, 2016GL070781, 2017. a
Dini, B., Daout, S., Manconi, A., and Loew, S.: Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan, Remote Sens. Environ., 233, 111408, https://doi.org/10.1016/j.rse.2019.111408, 2019. a, b
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.: Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models, J. Appl. Geophys., 69, 35–50, https://doi.org/10.1016/j.jappgeo.2009.03.010, 2009. a
Emardson, T. R., Simons, M., and Webb, F. H.: Neutral atmospheric delay in interferometric synthetic aperture radar applications: statistical description and mitigation, J. Geophys. Res.-Sol. Ea., 108, 2231, https://doi.org/10.1029/2002JB001781, 2003. a, b
Eshqi Molan, Y., Kim, J.-W., Lu, Z., Wylie, B., and Zhu, Z.: Modeling wildfire-induced permafrost deformation in an Alaskan boreal forest using InSAR observations, Remote Sens.-Basel, 10, 405, https://doi.org/10.3390/rs10030405, 2018. a
Fattahi, H. and Amelung, F.: DEM error correction in InSAR time series, IEEE T. Geosci. Remote, 51, 4249–4259, https://doi.org/10.1109/TGRS.2012.2227761, 2013. a, b
Fattahi, H., Simons, M., and Agram, P.: InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique, IEEE T. Geosci. Remote, 55, 5984–5996, https://doi.org/10.1109/TGRS.2017.2718566, 2017. a
Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., and Minster, B.: Deformation on nearby faults induced by the 1999 Hector Mine earthquake, Science, 297, 1858–1862, https://doi.org/10.1126/science.1074671, 2002. a
Gray, A. L., Mattar, K. E., and Sofko, G.: Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27, 1451–1454, https://doi.org/10.1029/2000gl000016, 2000. a
Hobbie, J. and Kling, G.: Alaska's Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes, Oxford University Press, https://doi.org/10.1093/acprof:osobl/9780199860401.001.0001, 2014. a
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F. J., Guritz, R., Yamanokuchi, T., and Hinzman, L.: InSAR detection and field evidence for thermokarst after a tundra wildfire, using ALOS-PALSAR, Remote Sens.-Basel, 8, 218, https://doi.org/10.3390/rs8030218, 2016. a
JAXA: ALOS PALSAR Level 1.0 Product, NASA Alaska Satellite Facility Distributed Active Archive Center [data set], https://doi.org/10.5067/J4JVCFDDPEW1, 2006. a
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C., and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands, Glob. Change Biol., 23, 1109–1127, https://doi.org/10.1111/gcb.13403, 2017. a
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006. a
Kling, G., Kipphut, G., and Miller, M.: Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets, Science, 251, 298–301, https://doi.org/10.1126/science.251.4991.298, 1991. a
Li, F., Hu, D., Liu, J., Qiu, X., and Ding, C.: DEM reconstruction of mountainous area from two anti-parallel aspects of airborne InSAR data, in: 2014 IEEE Geoscience and Remote Sensing Symposium, Québec City, QC, Canada, 13–18 July 2014, IEEE, 386–389, https://doi.org/10.1109/IGARSS.2014.6946439, 2014. a
Liu, L., Zhang, T., and Wahr, J.: InSAR measurements of surface deformation over permafrost on the North Slope of Alaska, J. Geophys. Res.-Earth, 115, F03023, https://doi.org/10.1029/2009JF001547, 2010. a, b, c, d
Liu, L., Schaefer, K., Zhang, T., and Wahr, J.: Estimating 1992–2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence, J. Geophys. Res.-Earth, 117, F01005, https://doi.org/10.1029/2011JF002041, 2012. a, b
Liu, L., Jafarov, E. E., Schaefer, K. M., Jones, B. M., Zebker, H. A., Williams, C. A., Rogan, J., and Zhang, T.: InSAR detects increase in surface subsidence caused by an Arctic tundra fire, Geophys. Res. Lett., 41, 3906–3913, https://doi.org/10.1002/2014GL060533, 2014. a
Liu, L., Schaefer, K. M., Chen, A. C., Gusmeroli, A., Zebker, H. A., and Zhang, T.: Remote sensing measurements of thermokarst subsidence using InSAR, J. Geophys. Res.-Earth, 120, 1935–1948, https://doi.org/10.1002/2015JF003599, 2015. a
Lyons, S. and Sandwell, D.: Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking, J. Geophys. Res.-Sol. Ea., 108, 2047, https://doi.org/10.1029/2002JB001831, 2003. a
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T.: The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142, https://doi.org/10.1038/364138a0, 1993. a
Michaelides, R., Schaefer, K., Zebker, H., Parsekian, A., Liu, L., Chen, J., Natali, S., Ludwig, S., and Schaefer, S.: Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm, Environ. Res. Lett., 14, 035007, https://doi.org/10.1088/1748-9326/aaf932, 2019. a
Misra, P. and Enge, P.: Global Positioning System: Signals, Measurements, and Performance, Ganga-Jamuna Press, https://books.google.com/books?id=5WJOywAACAAJ (last access: 1 June 2024), 2011. a
Muskett, R. R. and Romanovsky, V. E.: Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements, Environ. Res. Lett., 4, 045009, https://doi.org/10.1088/1748-9326/4/4/045009, 2009. a, b
Neilson, B. T., Cardenas, M. B., O'Connor, M. T., Rasmussen, M. T., King, T. V., and Kling, G. W.: Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds, Geophys. Res. Lett., 45, 7596–7605, https://doi.org/10.1029/2018GL078140, 2018. a
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R., Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated surface/subsurface permafrost thermal hydrology: model formulation and proof-of-concept simulations, Water Resour. Res., 52, 6062–6077, https://doi.org/10.1002/2015WR018427, 2016. a
Paytan, A., Lecher, A. L., Dimova, N., Sparrow, K. J., Kodovska, F. G.-T., Murray, J., Tulaczyk, S., and Kessler, J. D.: Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study, P. Natl. Acad. Sci. USA, 112, 3636–3640, https://doi.org/10.1073/pnas.1417392112, 2015. a
Ping, C.-L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H., Romanovsky, V. E., and Walker, D. A.: High stocks of soil organic carbon in the North American Arctic region, Nat. Geosci., 1, 615–619, https://doi.org/10.1038/ngeo284, 2008. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, Michael, J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a, b
Pritchard, M. E. and Simons, M.: A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418, 167–171, https://doi.org/10.1038/nature00872, 2002. a
Romanowicz, K. J. and Kling, G. W.: Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra, Environ. Microbiol., 24, 6220–6237, https://doi.org/10.1111/1462-2920.16218, 2022. a
Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H.: The InSAR scientific computing environment, in: EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012, VDE730–733, ISBN: 978-3-8007-3404-7, 2012. a
Rosen, P., Hensley, S., Joughin, I., K.Li, F., Madsen, S., Rodriguez, E., and Goldstein, R. M.: Synthetic aperture radar interferometry, P. IEEE,, 88, 333–382, https://doi.org/10.1109/5.838084, 2000. a
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen, Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR, Remote Sens. Environ., 231, 111236, https://doi.org/10.1016/j.rse.2019.111236, 2019. a, b
Sandwell, D. T. and Price, E. J.: Phase gradient approach to stacking interferograms, J. Geophys. Res.-Sol. Ea., 103, 30183–30204, https://doi.org/10.1029/1998JB900008, 1998. a, b
Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P.: Open radar interferometry software for mapping surface Deformation, EOS T. Am. Geophys. Un., 92, 234–234, https://doi.org/10.1029/2011EO280002, 2011. a
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R.: The impact of the permafrost carbon feedback on global climate, Environ. Res. Lett., 9, 085003, https://doi.org/10.1088/1748-9326/9/8/085003, 2014. a
Schaefer, K., Liu, L., Parsekian, A., Jafarov, E., Chen, A., Zhang, T., Gusmeroli, A., Panda, S., Zebker, H. A., and Schaefer, T.: Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska using interferometric synthetic aperture radar, Remote Sens.-Basel, 7, 3735–3759, https://doi.org/10.3390/rs70403735, 2015. a
Schuur, E. A., McGuire, A., Schädel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: a research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shirzaei, M., Bürgmann, R., Foster, J., Walter, T., and Brooks, B.: Aseismic deformation across the Hilina fault system, Hawaii, revealed by wavelet analysis of InSAR and GPS time series, Earth Planet. Sc. Lett., 376, 12–19, https://doi.org/10.1016/j.epsl.2013.06.011, 2013. a
Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., and Budkewitsch, P.: A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada, Remote Sens. Environ., 115, 3491–3506, https://doi.org/10.1016/j.rse.2011.08.012, 2011. a, b
Sjoberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., and Lyon, S. W.: Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling, Water Resour. Res., 52, 1591–1606, https://doi.org/10.1002/2015WR017571, 2016. a
Staniewicz, S., Chen, J., Lee, H., Olson, J., Savvaidis, A., Reedy, R., Breton, C., Rathje, E., and Hennings, P.: InSAR reveals complex surface deformation patterns over an 80,000 km2 oil-producing region in the Permian Basin, Geophys. Res. Lett., 47, e2020GL090151, https://doi.org/10.1029/2020GL090151, 2020. a, b, c
Stephenson, O. L., Liu, Y.-K., Yunjun, Z., Simons, M., Rosen, P., and Xu, X.: The impact of plate motions on long-wavelength InSAR-derived velocity fields, Geophys. Res. Lett., 49, e2022GL099835, https://doi.org/10.1029/2022GL099835, 2022. a
Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., and Kling, G. W.: An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport, Global Biogeochem. Cy., 17, 1105, https://doi.org/10.1029/2003GB002041, 2003. a
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni, R.: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote Sens. Environ., 89, 281–308, https://doi.org/10.1016/j.rse.2003.10.018, 2004. a
Streletskiy, D. A., Maslakov, A., Grosse, G., Shiklomanov, N. I., Farquharson, L., Zwieback, S., Iwahana, G., Bartsch, A., Liu, L., Strozzi, T., Lee, H., and Debolskiy, M. V.: Thawing permafrost is subsiding in the Northern Hemisphere – review and perspectives, Environ. Res. Lett., 20, 013006, https://doi.org/10.1088/1748-9326/ada2ff, 2025. a
Strozzi, T., Antonova, S., Günther, F., Matzler, E., Vieira, G., Wegmüller, U., Westermann, S., and Bartsch, A.: Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas, Remote Sens.-Basel, 10, 1360, https://doi.org/10.3390/rs10091360, 2018. a, b
Taylor, M. A., Celis, G., Ledman, J. D., Mauritz, M., Natali, S. M., Pegoraro, E., Schädel, C., and Schuur, E. A.: Experimental soil warming and permafrost thaw increase CH4 emissions in an upland tundra ecosystem, J. Geophys. Res.-Biogeo., 126, e2021JG006376, https://doi.org/10.1029/2021jg006376, 2021. a
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global bathymetry and topography at 15 Arc Sec: SRTM15+, Earth and Space Science, 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019. a
Vonk, J. E. and Gustafsson, O.: Permafrost-carbon complexities, Nat. Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013. a
Walker, D. A. and Walker, M. D.: Terrain and Vegetation of the Imnavait Creek Watershed, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-01145-4_4, 73–108, 1996. a
Walker, D., Daniëls, F., Matveyeva, N., Šibík, J., Walker, M., Breen, A., Druckenmiller, L. A., Raynolds, M., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, H., Ermokhina, K., Fosaa, A., Heidmarsson, S., Heim, B., Jónsdóttir, I., Koroleva, N., Lévesque, E., Mackenzie, W., Henry, G., Nilsen, L., Peet, R., Razzhivin, V., Talbot, S., Telyatnikov, M., Thannheiser, D., Webber, P., and Wirth, L.: Circumpolar Arctic vegetation classification, Phytopathology, 48, 181–201, https://doi.org/10.1127/PHYTO/2017/0192, 2017. a
Walvoord, M. and Striegl, R.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River Basin: potential impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007. a
Wang, K. and Chen, J.: Accurate persistent scatterer identification based on phase similarity of radar pixels, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2022.3210868, 2022. a
Wegmuller, U., Werner, C., Strozzi, T., and Wiesmann, A.: Ionospheric electron concentration effects on SAR and INSAR, in: 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006, IEEE, https://doi.org/10.1109/IGARSS.2006.956, 3731–3734, 2006. a
Werner, C. L., Wegmuller, U., Strozzi, T., and Wiesmann, A.: Interferometric point target analysis for deformation mapping, in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003, IEEE, 7, 4362–4364, https://doi.org/10.1109/IGARSS.2003.1295516, 2003. a
Widhalm, B., Bartsch, A., Strozzi, T., Jones, N., Khomutov, A., Babkina, E., Leibman, M., Khairullin, R., Göckede, M., Bergstedt, H., von Baeckmann, C., and Muri, X.: InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions, The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, 2025. a
Woo, M.-K.: Permafrost Hydrology, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-23462-0, 2012. a
Wu, X., Dong, Z., Jin, S., He, Y., Song, Y., Ma, W., and Yang, L.: First measurement of soil freeze/thaw cycles in the Tibetan Plateau using CYGNSS GNSS-R data, Remote Sens.-Basel, 12, 2361, https://doi.org/10.3390/rs12152361, 2020. a
Yanagiya, K. and Furuya, M.: Post-wildfire surface deformation near Batagay, Eastern Siberia, detected by L-band and C-band InSAR, J. Geophys. Res.-Earth, 125, e2019JF005473, https://doi.org/10.1029/2019JF005473, 2020. a
Zebker, H. A. and Villasenor, J.: Decorrelation in interferometric radar echoes, IEEE T. Geosci. Remote, 30, 950–959, https://doi.org/10.1109/36.175330, 1992. a, b
Zebker, H. A., Werner, C., Rosen, P., and Hensley, S.: Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE T. Geosci. Remote, 32, 823–836, https://doi.org/10.1109/36.298010, 1994. a
Zebker, H. A., Rosen, P. A., and Hensley, S.: Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res.-Sol. Ea., 102, 7547–7563, https://doi.org/10.1029/96JB03804, 1997. a, b
Zebker, M. S., Chen, J., and Hesse, M. A.: Robust surface deformation and tropospheric noise characterization from common-reference interferogram subsets, IEEE T. Geosci. Remote, 61, 1–14, https://doi.org/10.1109/TGRS.2023.3288019, 2023. a
Zhang, C. and Lu, N.: What is the range of soil water density? Critical reviews with a unified model, Rev. Geophys., 56, 532–562, https://doi.org/10.1029/2018RG000597, 2018. a
Zhou, C., Zhang, G., Yang, Z., Ao, M., Liu, Z., and Zhu, J.: An adaptive terrain-dependent method for SRTM DEM correction over mountainous areas, IEEE Access, 8, 130878–130887, https://doi.org/10.1109/ACCESS.2020.3009851, 2020. a
Zwieback, S. and Meyer, F. J.: Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence, The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, 2021. a
Zwieback, S., Iwahana, G., Sakhalkar, S., Biessel, R., Taylor, S., and Meyer, F. J.: Excess ground ice profiles in continuous permafrost mapped from InSAR subsidence, Water Resour. Res., 60, e2023WR035331, https://doi.org/10.1029/2023wr035331, 2024a. a
Zwieback, S., Liu, L., Rouyet, L., Short, N., and Strozzi, T.: Advances in InSAR analysis of permafrost terrain, Permafrost. Periglac., 35, 544–556, https://doi.org/10.1002/ppp.2248, 2024b. a
Short summary
As the soil thaws in summer, the land subsides, owing to the greater volume of ice than of water. This deformation helps monitor water storage because the subsidence magnitude is proportional to water volume. In this study, the interferometric synthetic aperture radar (InSAR) technique was used to map subsidence around Toolik Lake, Arctic Alaska. Both InSAR and field observations suggest that soil water storage ranges from 0 to 75 cm, with small errors, and that the spatial distribution of soil water correlates strongly with topography and vegetation.
As the soil thaws in summer, the land subsides, owing to the greater volume of ice than of...