Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution InSAR regional soil water storage mapping above permafrost
Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
Jingyi Chen
Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
Center of Space Research, University of Texas at Austin, Austin, TX, USA
Earth and Planetary Sciences, University of Texas at Austin, Austin, TX, USA
M. Bayani Cardenas
Earth and Planetary Sciences, University of Texas at Austin, Austin, TX, USA
George W. Kling
Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Cited articles
Abe, T., Iwahana, G., Efremov, P. V., Desyatkin, A. R., Kawamura, T., Fedorov, A., Zhegusov, Y., Yanagiya, K., and Tadono, T.: Surface displacement revealed by L-band InSAR analysis in the Mayya area, Central Yakutia, underlain by continuous permafrost, Earth Planets Space, 72, 138, https://doi.org/10.1186/s40623-020-01266-3, 2020. a
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kaab, A., Heim, B., Langer, M., Bornemann, N., and Boike, J.: Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X interferometry, Remote Sens.-Basel, 10, 494, https://doi.org/10.3390/rs10040494, 2018. a, b
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE T. Geosci. Remote, 40, 2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002. a, b
Bond-Lamberty, B., Smith, A. P., and Bailey, V.: Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils, Biogeosciences, 13, 6669–6681, https://doi.org/10.5194/bg-13-6669-2016, 2016. a
Carreno-Luengo, H. and Ruf, C.: Freeze/thaw retrieval over high altitude areas with CYGNSS, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, IEEE, 7807–7810, https://doi.org/10.1109/IGARSS47720.2021.9553238, 2021. a
Carreno-Luengo, H. and Ruf, C. S.: Retrieving freeze/thaw surface state from CYGNSS measurements, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2021.3120932, 2022. a, b
Chen, J. and Zebker, H. A.: Ionospheric artifacts in simultaneous L-band InSAR and GPS observations, IEEE T. Geosci. Remote, 50, 1227–1239, https://doi.org/10.1109/TGRS.2011.2164805, 2012. a
Chen, J., Zebker, H. A., Segall, P., and Miklius, A.: The 2010 slow slip event and secular motion at Kilauea, Hawaii, inferred from TerraSAR-X InSAR data, J. Geophys. Res.-Sol. Ea., 119, 6667–6683, https://doi.org/10.1002/2014JB011156, 2014. a
Chen, J., Wu, Y., O'Connor, M., Cardenas, M. B., Schaefer, K., Michaelides, R., and Kling, G.: Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR, Remote Sens. Environ., 248, 112007, https://doi.org/10.1016/j.rse.2020.112007, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Chen, J., Wu, T., Liu, L., Gong, W., Zwieback, S., Zou, D., Zhu, X., Hu, G., Du, E., Wu, X., Li, R., and Yang, S.: Increased water content in the active layer revealed by regional scale InSAR and independent component analysis on the Central Qinghai Tibet Plateau, Geophys. Res. Lett., 49, e2021GL097586, https://doi.org/10.1029/2021gl097586, 2022. a
Chen, R. H., Michaelides, R. J., Zhao, Y., Huang, L., Wig, E., Sullivan, T. D., Parsekian, A. D., Zebker, H. A., Moghaddam, M., and Schaefer, K. M.: Permafrost dynamics observatory: retrieval of active layer thickness and soil moisture from airborne InSAR and polsar data, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, IEEE, https://doi.org/10.1109/IGARSS47720.2021.9554288, 1444–1447, 2021. a
Chen, R. H., Michaelides, R. J., Zhao, Y., Huang, L., Wig, E., Sullivan, T. D., Parsekian, A. D., Zebker, H. A., Moghaddam, M., and Schaefer, K. M.: Permafrost Dynamics Observatory (PDO): 2. joint retrieval of permafrost active layer thickness and soil moisture from L band InSAR and p band polsar, Earth and Space Science, 10, e2022EA002453, https://doi.org/10.1029/2022ea002453, 2023. a
Daout, S., Doin, M.-P., Peltzer, G., Socquet, A., and Lasserre, C.: Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau, Geophys. Res. Lett., 44, 901–909, https://doi.org/10.1002/2016GL070781, 2016GL070781, 2017. a
Dini, B., Daout, S., Manconi, A., and Loew, S.: Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan, Remote Sens. Environ., 233, 111408, https://doi.org/10.1016/j.rse.2019.111408, 2019. a, b
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.: Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models, J. Appl. Geophys., 69, 35–50, https://doi.org/10.1016/j.jappgeo.2009.03.010, 2009. a
Emardson, T. R., Simons, M., and Webb, F. H.: Neutral atmospheric delay in interferometric synthetic aperture radar applications: statistical description and mitigation, J. Geophys. Res.-Sol. Ea., 108, 2231, https://doi.org/10.1029/2002JB001781, 2003. a, b
Eshqi Molan, Y., Kim, J.-W., Lu, Z., Wylie, B., and Zhu, Z.: Modeling wildfire-induced permafrost deformation in an Alaskan boreal forest using InSAR observations, Remote Sens.-Basel, 10, 405, https://doi.org/10.3390/rs10030405, 2018. a
Fattahi, H. and Amelung, F.: DEM error correction in InSAR time series, IEEE T. Geosci. Remote, 51, 4249–4259, https://doi.org/10.1109/TGRS.2012.2227761, 2013. a, b
Fattahi, H., Simons, M., and Agram, P.: InSAR time-series estimation of the ionospheric phase delay: an extension of the split range-spectrum technique, IEEE T. Geosci. Remote, 55, 5984–5996, https://doi.org/10.1109/TGRS.2017.2718566, 2017. a
Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., and Minster, B.: Deformation on nearby faults induced by the 1999 Hector Mine earthquake, Science, 297, 1858–1862, https://doi.org/10.1126/science.1074671, 2002. a
Gray, A. L., Mattar, K. E., and Sofko, G.: Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27, 1451–1454, https://doi.org/10.1029/2000gl000016, 2000. a
Hobbie, J. and Kling, G.: Alaska's Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes, Oxford University Press, https://doi.org/10.1093/acprof:osobl/9780199860401.001.0001, 2014. a
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F. J., Guritz, R., Yamanokuchi, T., and Hinzman, L.: InSAR detection and field evidence for thermokarst after a tundra wildfire, using ALOS-PALSAR, Remote Sens.-Basel, 8, 218, https://doi.org/10.3390/rs8030218, 2016. a
JAXA: ALOS PALSAR Level 1.0 Product, NASA Alaska Satellite Facility Distributed Active Archive Center [data set], https://doi.org/10.5067/J4JVCFDDPEW1, 2006. a
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C., and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands, Glob. Change Biol., 23, 1109–1127, https://doi.org/10.1111/gcb.13403, 2017. a
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006. a
Kling, G., Kipphut, G., and Miller, M.: Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets, Science, 251, 298–301, https://doi.org/10.1126/science.251.4991.298, 1991. a
Li, F., Hu, D., Liu, J., Qiu, X., and Ding, C.: DEM reconstruction of mountainous area from two anti-parallel aspects of airborne InSAR data, in: 2014 IEEE Geoscience and Remote Sensing Symposium, Québec City, QC, Canada, 13–18 July 2014, IEEE, 386–389, https://doi.org/10.1109/IGARSS.2014.6946439, 2014. a
Liu, L., Zhang, T., and Wahr, J.: InSAR measurements of surface deformation over permafrost on the North Slope of Alaska, J. Geophys. Res.-Earth, 115, F03023, https://doi.org/10.1029/2009JF001547, 2010. a, b, c, d
Liu, L., Schaefer, K., Zhang, T., and Wahr, J.: Estimating 1992–2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence, J. Geophys. Res.-Earth, 117, F01005, https://doi.org/10.1029/2011JF002041, 2012. a, b
Liu, L., Jafarov, E. E., Schaefer, K. M., Jones, B. M., Zebker, H. A., Williams, C. A., Rogan, J., and Zhang, T.: InSAR detects increase in surface subsidence caused by an Arctic tundra fire, Geophys. Res. Lett., 41, 3906–3913, https://doi.org/10.1002/2014GL060533, 2014. a
Liu, L., Schaefer, K. M., Chen, A. C., Gusmeroli, A., Zebker, H. A., and Zhang, T.: Remote sensing measurements of thermokarst subsidence using InSAR, J. Geophys. Res.-Earth, 120, 1935–1948, https://doi.org/10.1002/2015JF003599, 2015. a
Lyons, S. and Sandwell, D.: Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking, J. Geophys. Res.-Sol. Ea., 108, 2047, https://doi.org/10.1029/2002JB001831, 2003. a
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T.: The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142, https://doi.org/10.1038/364138a0, 1993. a
Michaelides, R., Schaefer, K., Zebker, H., Parsekian, A., Liu, L., Chen, J., Natali, S., Ludwig, S., and Schaefer, S.: Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm, Environ. Res. Lett., 14, 035007, https://doi.org/10.1088/1748-9326/aaf932, 2019. a
Misra, P. and Enge, P.: Global Positioning System: Signals, Measurements, and Performance, Ganga-Jamuna Press, https://books.google.com/books?id=5WJOywAACAAJ (last access: 1 June 2024), 2011. a
Muskett, R. R. and Romanovsky, V. E.: Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements, Environ. Res. Lett., 4, 045009, https://doi.org/10.1088/1748-9326/4/4/045009, 2009. a, b
Neilson, B. T., Cardenas, M. B., O'Connor, M. T., Rasmussen, M. T., King, T. V., and Kling, G. W.: Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds, Geophys. Res. Lett., 45, 7596–7605, https://doi.org/10.1029/2018GL078140, 2018. a
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R., Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated surface/subsurface permafrost thermal hydrology: model formulation and proof-of-concept simulations, Water Resour. Res., 52, 6062–6077, https://doi.org/10.1002/2015WR018427, 2016. a
Paytan, A., Lecher, A. L., Dimova, N., Sparrow, K. J., Kodovska, F. G.-T., Murray, J., Tulaczyk, S., and Kessler, J. D.: Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study, P. Natl. Acad. Sci. USA, 112, 3636–3640, https://doi.org/10.1073/pnas.1417392112, 2015. a
Ping, C.-L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H., Romanovsky, V. E., and Walker, D. A.: High stocks of soil organic carbon in the North American Arctic region, Nat. Geosci., 1, 615–619, https://doi.org/10.1038/ngeo284, 2008. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, Michael, J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a, b
Pritchard, M. E. and Simons, M.: A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418, 167–171, https://doi.org/10.1038/nature00872, 2002. a
Romanowicz, K. J. and Kling, G. W.: Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra, Environ. Microbiol., 24, 6220–6237, https://doi.org/10.1111/1462-2920.16218, 2022. a
Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H.: The InSAR scientific computing environment, in: EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012, VDE730–733, ISBN: 978-3-8007-3404-7, 2012. a
Rosen, P., Hensley, S., Joughin, I., K.Li, F., Madsen, S., Rodriguez, E., and Goldstein, R. M.: Synthetic aperture radar interferometry, P. IEEE,, 88, 333–382, https://doi.org/10.1109/5.838084, 2000. a
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen, Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR, Remote Sens. Environ., 231, 111236, https://doi.org/10.1016/j.rse.2019.111236, 2019. a, b
Sandwell, D. T. and Price, E. J.: Phase gradient approach to stacking interferograms, J. Geophys. Res.-Sol. Ea., 103, 30183–30204, https://doi.org/10.1029/1998JB900008, 1998. a, b
Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P.: Open radar interferometry software for mapping surface Deformation, EOS T. Am. Geophys. Un., 92, 234–234, https://doi.org/10.1029/2011EO280002, 2011. a
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R.: The impact of the permafrost carbon feedback on global climate, Environ. Res. Lett., 9, 085003, https://doi.org/10.1088/1748-9326/9/8/085003, 2014. a
Schaefer, K., Liu, L., Parsekian, A., Jafarov, E., Chen, A., Zhang, T., Gusmeroli, A., Panda, S., Zebker, H. A., and Schaefer, T.: Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska using interferometric synthetic aperture radar, Remote Sens.-Basel, 7, 3735–3759, https://doi.org/10.3390/rs70403735, 2015. a
Schuur, E. A., McGuire, A., Schädel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., and Vonk, J.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: a research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shirzaei, M., Bürgmann, R., Foster, J., Walter, T., and Brooks, B.: Aseismic deformation across the Hilina fault system, Hawaii, revealed by wavelet analysis of InSAR and GPS time series, Earth Planet. Sc. Lett., 376, 12–19, https://doi.org/10.1016/j.epsl.2013.06.011, 2013. a
Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., and Budkewitsch, P.: A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada, Remote Sens. Environ., 115, 3491–3506, https://doi.org/10.1016/j.rse.2011.08.012, 2011. a, b
Sjoberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., and Lyon, S. W.: Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling, Water Resour. Res., 52, 1591–1606, https://doi.org/10.1002/2015WR017571, 2016. a
Staniewicz, S., Chen, J., Lee, H., Olson, J., Savvaidis, A., Reedy, R., Breton, C., Rathje, E., and Hennings, P.: InSAR reveals complex surface deformation patterns over an 80,000 km2 oil-producing region in the Permian Basin, Geophys. Res. Lett., 47, e2020GL090151, https://doi.org/10.1029/2020GL090151, 2020. a, b, c
Stephenson, O. L., Liu, Y.-K., Yunjun, Z., Simons, M., Rosen, P., and Xu, X.: The impact of plate motions on long-wavelength InSAR-derived velocity fields, Geophys. Res. Lett., 49, e2022GL099835, https://doi.org/10.1029/2022GL099835, 2022. a
Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., and Kling, G. W.: An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport, Global Biogeochem. Cy., 17, 1105, https://doi.org/10.1029/2003GB002041, 2003. a
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni, R.: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems, Remote Sens. Environ., 89, 281–308, https://doi.org/10.1016/j.rse.2003.10.018, 2004. a
Streletskiy, D. A., Maslakov, A., Grosse, G., Shiklomanov, N. I., Farquharson, L., Zwieback, S., Iwahana, G., Bartsch, A., Liu, L., Strozzi, T., Lee, H., and Debolskiy, M. V.: Thawing permafrost is subsiding in the Northern Hemisphere – review and perspectives, Environ. Res. Lett., 20, 013006, https://doi.org/10.1088/1748-9326/ada2ff, 2025. a
Strozzi, T., Antonova, S., Günther, F., Matzler, E., Vieira, G., Wegmüller, U., Westermann, S., and Bartsch, A.: Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas, Remote Sens.-Basel, 10, 1360, https://doi.org/10.3390/rs10091360, 2018. a, b
Taylor, M. A., Celis, G., Ledman, J. D., Mauritz, M., Natali, S. M., Pegoraro, E., Schädel, C., and Schuur, E. A.: Experimental soil warming and permafrost thaw increase CH4 emissions in an upland tundra ecosystem, J. Geophys. Res.-Biogeo., 126, e2021JG006376, https://doi.org/10.1029/2021jg006376, 2021. a
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global bathymetry and topography at 15 Arc Sec: SRTM15+, Earth and Space Science, 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019. a
Vonk, J. E. and Gustafsson, O.: Permafrost-carbon complexities, Nat. Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013. a
Walker, D. A. and Walker, M. D.: Terrain and Vegetation of the Imnavait Creek Watershed, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-01145-4_4, 73–108, 1996. a
Walker, D., Daniëls, F., Matveyeva, N., Šibík, J., Walker, M., Breen, A., Druckenmiller, L. A., Raynolds, M., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, H., Ermokhina, K., Fosaa, A., Heidmarsson, S., Heim, B., Jónsdóttir, I., Koroleva, N., Lévesque, E., Mackenzie, W., Henry, G., Nilsen, L., Peet, R., Razzhivin, V., Talbot, S., Telyatnikov, M., Thannheiser, D., Webber, P., and Wirth, L.: Circumpolar Arctic vegetation classification, Phytopathology, 48, 181–201, https://doi.org/10.1127/PHYTO/2017/0192, 2017. a
Walvoord, M. and Striegl, R.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River Basin: potential impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007. a
Wang, K. and Chen, J.: Accurate persistent scatterer identification based on phase similarity of radar pixels, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2022.3210868, 2022. a
Wegmuller, U., Werner, C., Strozzi, T., and Wiesmann, A.: Ionospheric electron concentration effects on SAR and INSAR, in: 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006, IEEE, https://doi.org/10.1109/IGARSS.2006.956, 3731–3734, 2006. a
Werner, C. L., Wegmuller, U., Strozzi, T., and Wiesmann, A.: Interferometric point target analysis for deformation mapping, in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003, IEEE, 7, 4362–4364, https://doi.org/10.1109/IGARSS.2003.1295516, 2003. a
Widhalm, B., Bartsch, A., Strozzi, T., Jones, N., Khomutov, A., Babkina, E., Leibman, M., Khairullin, R., Göckede, M., Bergstedt, H., von Baeckmann, C., and Muri, X.: InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions, The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, 2025. a
Woo, M.-K.: Permafrost Hydrology, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-23462-0, 2012. a
Wu, X., Dong, Z., Jin, S., He, Y., Song, Y., Ma, W., and Yang, L.: First measurement of soil freeze/thaw cycles in the Tibetan Plateau using CYGNSS GNSS-R data, Remote Sens.-Basel, 12, 2361, https://doi.org/10.3390/rs12152361, 2020. a
Yanagiya, K. and Furuya, M.: Post-wildfire surface deformation near Batagay, Eastern Siberia, detected by L-band and C-band InSAR, J. Geophys. Res.-Earth, 125, e2019JF005473, https://doi.org/10.1029/2019JF005473, 2020. a
Zebker, H. A. and Villasenor, J.: Decorrelation in interferometric radar echoes, IEEE T. Geosci. Remote, 30, 950–959, https://doi.org/10.1109/36.175330, 1992. a, b
Zebker, H. A., Werner, C., Rosen, P., and Hensley, S.: Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE T. Geosci. Remote, 32, 823–836, https://doi.org/10.1109/36.298010, 1994. a
Zebker, H. A., Rosen, P. A., and Hensley, S.: Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res.-Sol. Ea., 102, 7547–7563, https://doi.org/10.1029/96JB03804, 1997. a, b
Zebker, M. S., Chen, J., and Hesse, M. A.: Robust surface deformation and tropospheric noise characterization from common-reference interferogram subsets, IEEE T. Geosci. Remote, 61, 1–14, https://doi.org/10.1109/TGRS.2023.3288019, 2023. a
Zhang, C. and Lu, N.: What is the range of soil water density? Critical reviews with a unified model, Rev. Geophys., 56, 532–562, https://doi.org/10.1029/2018RG000597, 2018. a
Zhou, C., Zhang, G., Yang, Z., Ao, M., Liu, Z., and Zhu, J.: An adaptive terrain-dependent method for SRTM DEM correction over mountainous areas, IEEE Access, 8, 130878–130887, https://doi.org/10.1109/ACCESS.2020.3009851, 2020. a
Zwieback, S. and Meyer, F. J.: Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence, The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, 2021. a
Zwieback, S., Iwahana, G., Sakhalkar, S., Biessel, R., Taylor, S., and Meyer, F. J.: Excess ground ice profiles in continuous permafrost mapped from InSAR subsidence, Water Resour. Res., 60, e2023WR035331, https://doi.org/10.1029/2023wr035331, 2024a. a
Zwieback, S., Liu, L., Rouyet, L., Short, N., and Strozzi, T.: Advances in InSAR analysis of permafrost terrain, Permafrost. Periglac., 35, 544–556, https://doi.org/10.1002/ppp.2248, 2024b. a
Short summary
As the soil thaws in summer, the land subsides, owing to the greater volume of ice than of water. This deformation helps monitor water storage because the subsidence magnitude is proportional to water volume. In this study, the interferometric synthetic aperture radar (InSAR) technique was used to map subsidence around Toolik Lake, Arctic Alaska. Both InSAR and field observations suggest that soil water storage ranges from 0 to 75 cm, with small errors, and that the spatial distribution of soil water correlates strongly with topography and vegetation.
As the soil thaws in summer, the land subsides, owing to the greater volume of ice than of...