Articles | Volume 29, issue 12
https://doi.org/10.5194/hess-29-2599-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2599-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does peatland rewetting mitigate flooding from extreme rainfall events?
Shirin Karimi
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Virginia Mosquera
CORRESPONDING AUTHOR
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Eliza Maher Hasselquist
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Järvi Järveoja
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Hjalmar Laudon
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Related authors
No articles found.
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328, https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The "two water-worlds hypothesis" has attracted significant public attention because it is an accessible way to describe the partitioning of water sources within catchments. This manuscript adds a new degree of complexity to that idea by recognizing that co-occurring tree species, which root at different depths, also use different water sources. So it leads to at least three water worlds.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337, https://doi.org/10.5194/hess-2024-337, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
A 40-year hydro-climatic time series from the Krycklan catchment revealed warmer winters associated with higher baseflow and lower summer baseflow. Climate index models suggest that while warmer winters enhance baseflow, they reduce water reserves necessary for summer baseflow. This was supported by an increasing winter precipitation isotope signal in winter baseflow, contrasted with a decreasing isotope signal in summer baseflow.
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022, https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary
Short summary
Historically, many peatlands in the boreal region have been drained for timber production. Given the prospects of a drier future due to climate change, wetland restorations are now increasing. Better maps hold the key to insights into restoration targets and land-use management policies, and maps are often the number one decision-support tool. We use an AI-developed soil moisture map based on laser scanning data to illustrate how the mapping of peatlands can be improved across an entire nation.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
Cited articles
Acreman, M. and Holden, J.: How wetlands affect floods, Wetlands, 33, 773–786, https://doi.org/10.1007/s13157-013-0473-2, 2013
Aghakouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate Extremes and Compound Hazards in a Warming World, Annu. Rev. Earth Pl. Sc., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-055228, 2020.
Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P., Caporn, S., and Anderson, P.: An overview of the progress and challenges of peatland restoration in Western Europe, Restor. Ecol., 25, 271–282, https://doi.org/10.1111/rec.12415, 2017.
Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S., McDonald, A. T., and Walker, A.: The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey, J. Hydrol., 381, 112–120, https://doi.org/10.1016/j.jhydrol.2009.11.031, 2010.
Armstrong, L., Peralta, A., Krauss, K. W., Cormier, N., Moss, R. F., Soderholm, E., McCall, A., Pickens, C., and Ardón, M.: Hydrologic Restoration Decreases Greenhouse Gas Emissions from Shrub Bog Peatlands in Southeastern US, Wetlands, 42, 81, https://doi.org/10.1007/s13157-022-01605-y, 2022.
Arsenault, J., Talbot, J., Moore, T. R., Beauvais, M. P., Franssen, J., and Roulet, N. T.: The Spatial Heterogeneity of Vegetation, Hydrology and Water Chemistry in a Peatland with Open-Water Pools, Ecosystems, 22, 1352–1367, https://doi.org/10.1007/s10021-019-00342-4, 2019.
Blume, T., Zehe, E., and Bronstert, A.: Rainfall-runoff response, event-based runoff coefficients and hydrograph separation, Hydrol. Sci. J., 52, 843–862, https://doi.org/10.1623/hysj.52.5.843, 2007.
Bring, A., Rosén, L., Thorslund, J., Tonderski, K., Åberg, C., Envall, I., and Laudon, H.: Groundwater storage effects from restoring, constructing or draining wetlands in temperate and boreal climates: a systematic review protocol, Environ. Evid., 9, 1–11, https://doi.org/10.1186/s13750-020-00209-5, 2020.
Bring, A., Thorslund, J., Rosén, L., Tonderski, K., Åberg, C., Envall, I., and Laudon, H.: Effects on groundwater storage of restoring, constructing or draining wetlands in temperate and boreal climates: a systematic review, Environ. Evid., 11, 38, https://doi.org/10.1186/s13750-022-00289-5, 2022.
Casselgård, M.: Effects of 100 years of drainage on peat properties in a drained peatland forests in northern Sweden Examensarbeten 2020: 4 Fakulteten för skogsvetenskap Institutionen för skogens ekologi och skötsel, https://stud.epsilon.slu.se (last access: 15 March 2024), 2020.
D'Acunha, B., Lee, S. C., and Johnson, M. S.: Ecohydrological responses to rewetting of a highly impacted raised bog ecosystem, Ecohydrology, 11, 1–12, https://doi.org/10.1002/eco.1922, 2018.
Dixon, S. D., Qassim, S. M., Rowson, J. G., Worrall, F., Evans, M. G., Boothroyd, I. M., and Bonn, A.: Restoration effects on water table depths and CO2 fluxes from climatically marginal blanket bog, Biogeochemistry, 118, 159–176, https://doi.org/10.1007/s10533-013-9915-4, 2014.
Duque, L.: IETD: Inter-Event Time Definition. R package version 1.0.0, https://cran.r-project.org/web/packages/IETD (last access: 15 March 2024), 2020.
Edokpa, D., Milledge, D., Allott, T., Holden, J., Shuttleworth, E., Kay, M., Johnston, A., Millin-Chalabi, G., Scott-Campbell, M., Chandler, D., Freestone, J., and Evans, M.: Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland, J. Hydrol., 609, 127688, https://doi.org/10.1016/j.jhydrol.2022.127688, 2022.
Evans, M. G., Burt, T. P., Holden, J., and Adamson, J. K.: Runoff generation and water table fluctuations in blanket peat: Evidence from UK data spanning the dry summer of 1995, J. Hydrol., 221, 141–160, https://doi.org/10.1016/S0022-1694(99)00085-2, 1999.
Franzen, L. G., Lindberg, F., Viklander, V., and Walther, A.: The potential peatland extent and carbon sink in Sweden, as related to the Peatland/Ice Age Hypothesis, Mines Peat, 10, 1–19, 2012.
Gatis, N., Benaud, P., Anderson, K., Ashe, J., Grand-Clement, E., Luscombe, D. J., Puttock, A., and Brazier, R. E.: Peatland restoration increases water storage and attenuates downstream stormflow but does not guarantee an immediate reversal of long-term ecohydrological degradation, Sci. Rep. [Code], University of Exeter, https://doi.org/10.24378/exe.4844, 2023.
Goudarzi, S., Milledge, D. G., Holden, J., Evans, M. G., Allott, T. E. H., Shuttleworth, E. L., Pilkington, M., and Walker, J.: Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits, Water Resour. Res., 57, e2020WR029209, https://doi.org/10.1029/2020WR029209, 2021.
Grand-Clement, E., Anderson, K., Smith, D., Luscombe, D., Gatis, N., Ross, M., and Brazier, R. E.: Evaluating ecosystem goods and services after restoration of marginal upland peatlands in South-west England, J. Appl. Ecol., 50, 324–334, https://doi.org/10.1111/1365-2664.12039, 2013.
Haapalehto, T., Kotiaho, J. S., Matilainen, R., and Tahvanainen, T.: The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands, J. Hydrol., 519, 1493–1505, https://doi.org/10.1016/j.jhydrol.2014.09.013, 2014.
Haque, A., Ali, G., and Badiou, P.: Event-based analysis of wetland hydrologic response in the Prairie Pothole Region, J. Hydrol., 604, 127237, https://doi.org/10.1016/j.jhydrol.2021.127237, 2022.
Hawcroft, M., Walsh, E., Hodges, K., and Zappa, G.: Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones, Environ. Res. Lett., 13, 124006, https://doi.org/10.1088/1748-9326/aaed59, 2018.
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M., Barr, A. G., Black, T. A., Blanken, P. D., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A., Euskirchen, E. S., Flanagan, L. B., Forbrich, I., Friborg, T., Grelle, A., Harder, S., Heliasz, M., Humphreys, E., Ikawa, H., Isabelle, P., Iwata, H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lindroth, A., Löfvenius M.O., Lohila, A., Mammarella, I., Marsh, P., Maximov, T., Melton, J. R., Moore, P. A., Nadeau, D. F., Nicholls, E. M., Nilsson, M. B., Ohta, T., Peichl, M., Petrone, R. M., Petrov, R., Prokushkin, A., Quinton, W. L., Reed, D. E., Roulet, N. T., Runkle, B. R., Sonnentag, O., Strachan, I. B., Taillardat, P., Tuittila, E., Tuovinen, J., Turner, J., Ueyama, M., Varlagin, A., Wilmking, M., Wofsy, S., and Zyrianov, V.: Increasing contribution of peatlands to boreal evapotranspiration in a warming climate, Nat. Clim. Change, 10, 555–560, https://doi.org/10.1038/s41558-020-0763-7, 2020.
Holden, J.: Chap. 14, Peatland hydrology, in: Developments in Earth Surface Processes, edited by: Martini, I. P., Cortizas, A. M., and Chesworth, W., Vol. 9, 319–346, https://doi.org/10.1016/S0928-2025(06)09014-6, 2006.
Holden, J. and Burt, T. P.: Runoff production in blanket peat covered catchments, Water Resour. Res., 39, 1191, https://doi.org/10.1029/2002WR001956, 2003.
Holden, J., Chapman, P. J., and Labadz, J. C.: Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration, Prog. Phys. Geogr., 28, 95–123, https://doi.org/10.1191/0309133304pp403ra, 2004.
Holden, J., Kirkby, M. J., Lane, S. N., Milledge, D. G., Brookes, C. J., Holden, V., and McDonald, A. T.: Overland flow velocity and roughness properties in peatlands, Water Resour. Res., 44, 1–11, https://doi.org/10.1029/2007WR006052, 2008.
Holden, J., Green, S. M., Baird, A. J., Grayson, R. P., Dooling, G. P., Chapman, P. J., Evans, C. D., Peacock, M., and Swindles, G.: The impact of ditch blocking on the hydrological functioning of blanket peatlands, Hydrol. Process., 31, 525–539, https://doi.org/10.1002/hyp.11031, 2017.
Howie, S. A., Whitfield, P. H., Hebda, R. J., Munson, T. G., Dakin, R. A., and Jeglum, J. K.: Water table and vegetation response to ditch blocking: Restoration of a raised bog in southwestern british columbia, Can. Water Res. J., 34, 381–392, https://doi.org/10.4296/cwrj3404381, 2009.
Javaheri, A. and Babbar-Sebens, M.: On comparison of peak flow reductions, flood inundation maps, and velocity maps in evaluating effects of restored wetlands on channel flooding, Ecol. Eng., 73, 132–145, https://doi.org/10.1016/j.ecoleng.2014.09.021, 2014.
Karimi, S., Hasselquist, E., Salimi, S., Järveoja, J., and Laudon, H.: Rewetting impact on the hydrological function of a drained peatland in the boreal landscape, J. Hydrol., 641, 131729, https://doi.org/10.1016/j.jhydrol.2024.131729, 2024.
Karlsen, R. H., Bishop, K., Grabs, T., Ottosson-Löfvenius, M., Laudon, H., and Seibert, J.: The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment. J. Hydrol., 570, 315–328, https://doi.org/10.1016/j.jhydrol.2018.12.065, 2019.
Ketcheson, S. J. and Price, J. S.: The impact of peatland restoration on the site hydrology of an abandoned block-cut bog, Wetlands, 31, 1263–1274, https://doi.org/10.1007/s13157-011-0241-0, 2011.
Kirchner, J. W., Benettin, P., and Van Meerveld, I.: Instructive Surprises in the Hydrological Functioning of Landscapes, Annu. Rev. Earth Pl. Sc., 51, 277–299, https://doi.org/10.1146/annurev-earth-071822-100356, 2023.
Kløve, B.: Retention of suspended solids and sediment bound nutrients from peat harvesting sites with peak runoff control, constructed floodplains and sedimentation ponds, Boreal Environ. Res., 5, 81–94, 2000.
Laine, A. M., Leppälä, M., Tarvainen, O., Päätalo, M. L., Seppänen, R., and Tolvanen, A.: Restoration of managed pine fens: Effect on hydrology and vegetation, Appl. Veg. Sci., 14, 340–349, https://doi.org/10.1111/j.1654-109X.2011.01123.x, 2011.
Laudon, H., Hasselquist, E. M., Peichl, M., Lindgren, K., Sponseller, R., Lidman, F., Kuglerová, L., Hasselquist, N. J., Bishop, K., Nilsson, M. B., and Ågren, A.: Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study, Hydrol. Process., 35, 1–15, https://doi.org/10.1002/hyp.14170, 2021.
Laudon, H., Lidberg, W., Sponseller, R. A., Maher Hasselquist, E., Westphal, F., Östlund, L., Sandström, C., Järveoja, J., Peichl, M., and Ågren, A.: Emerging technology can guide ecosystem restoration for future water security, Hydrol. Process., 36, 1–5, https://doi.org/10.1002/hyp.14729, 2022.
Laudon, H., Mosquera, V., Eklöf, K., Järveoja, J., Karimi, S., Krasnova, A., Peichl, M., Pinkwart, A., Tong, C. H. M., Wallin, M. B., Zannella, A., and Hasselquist, E. M.: Consequences of rewetting and ditch cleaning on hydrology, water quality and greenhouse gas balance in a drained northern landscape, Sci. Rep., 13, 20218. https://doi.org/10.1038/s41598-023-47528-4, 2023.
Liu, H. and Lennartz, B.: Hydraulic properties of peat soils along a bulk density gradient – A meta study, Hydrol. Process., 33, 101–114, https://doi.org/10.1002/hyp.13314, 2019.
Loisel, J. and Gallego-Sala, A.: Ecological resilience of restored peatlands to climate change, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00547-x, 2022.
Menberu, M. W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen, A.-K. A., Penttinen, J., and Kløve, B.: Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success, Water Resour. Res., 52, 3742–3760, https://doi.org/10.1002/2015WR018578, 2016.
Menberu, M. W., Haghighi, A. T., Ronkanen, A. K., Marttila, H., and Kløve, B.: Effects of Drainage and Subsequent Restoration on Peatland Hydrol. Process. at Catchment Scale, Water Resour. Res., 54, 4479–4497, https://doi.org/10.1029/2017WR022362, 2018.
Montanarella, L., Jones, R. J. A., and Hiederer, R.: The distribution of peatland in Europe, Mires Peat, 1, 1–10, http://hdl.handle.net/1826/3415 (last access: 15 March 2024), 2006.
Noumonvi, K. D., Ågren, A., Ratcliffe, J. L., Öquist, M. G., Ericson, L., Tong, C. H. M., Järveoja, J., Zhu, W., Osterwalder, S., Peng, H., Erefur, C., Bishop, K., Laudon, H., Nilsson, M. B., and Peichl, M.: The Kulbäcksliden Research Infrastructure: a unique setting for northern peatland studies, Front. Earth Sci., 11, 1194749, https://doi.org/10.3389/feart.2023.1194749, 2023.
Puttock, A., Graham, H. A., Ashe, J., Luscombe, D. J., and Brazier, R. E.: Beaver dams attenuate flow: A multi-site study, Hydrol. Process., 35, e14017, https://doi.org/10.1002/hyp.14017, 2021.
R Core Team: A language and environment for statistical computing (version 4.1.2), 2021.
Rosner, B.: Percentage points for a generalized esd many-outlier procedure, Technometrics, 25, 165–172, https://doi.org/10.1080/00401706.1983.10487848, 1983.
Shantz, M. A. and Price, J. S.: Characterization of surface storage and runoff patterns following peatland restoration, Quebec, Canada, Hydrol. Process., 20, 3799–3814, https://doi.org/10.1002/hyp.6140, 2006.
Shuttleworth, E. L., Evans, M. G., Hutchinson, S. M., and Rothwell, J. J.: Peatland restoration: Controls on sediment production and reductions in carbon and pollutant export, Earth Surf. Proc. Land., 40, 459–472, https://doi.org/10.1002/esp.3645, 2015.
Shuttleworth, E. L., Evans, M. G., Pilkington, M., Spencer, T., Walker, J., Milledge, D., and Allott, T. E. H.: Restoration of blanket peat moorland delays stormflow from hillslopes and reduces peak discharge, J. Hydrol., 2, 100006, https://doi.org/10.1016/j.hydroa.2018.100006, 2019.
Soomets, E., Lõhmus, A., and Rannap, R.: Restoring functional forested peatlands by combining ditch-blocking and partial cutting: An amphibian perspective, Ecol. Eng., 192, 106968, https://doi.org/10.1016/j.ecoleng.2023.106968, 2023.
Svartberget Research Station: Water balance – stream water level and discharge from Krycklan, Swedish Infrastructure for Ecosystem Science (SITES) [data set], https://hdl.handle.net/11676.1/QCGbar0r4DXpGWZoOvLFSn1b (last access: 15 March 2024), 2024
Wickham, H.: ggplot: Elegant Graphics for Data Analysis (Version 3.4.2) [R package], Springer-Verlag, https://cran.r-project.org/web/packages/ggplot2/index.html (last access: 1 March 2024), 2016.
Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., and Morris, M.: Recovery of water tables in Welsh blanket bog after drain blocking: Discharge rates, timescales and the influence of local conditions, J. Hydrol., 391, 377–386, https://doi.org/10.1016/j.jhydrol.2010.07.042, 2010.
Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., and Morris, M.: The impact of drain blocking on an upland blanket bog during storm and drought events, and the importance of sampling-scale, J. Hydrol., 404, 198–208, https://doi.org/10.1016/j.jhydrol.2011.04.030, 2011.
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting significantly reduced peak flow and runoff coefficient and mitigated flashy hydrograph responses.
There is an increasing interest in rewetting drained peatlands to regain their important...