Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds,Louise Slater,Louise Arnal,and Andrew W. Wood
Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
Viewed
Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.
Total article views: 298 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
290
5
3
298
3
1
1
HTML: 290
PDF: 5
XML: 3
Total: 298
Supplement: 3
BibTeX: 1
EndNote: 1
Views and downloads (calculated since 23 Sep 2024)
Cumulative views and downloads
(calculated since 23 Sep 2024)
Total article views: 65 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
58
5
2
65
3
1
1
HTML: 58
PDF: 5
XML: 2
Total: 65
Supplement: 3
BibTeX: 1
EndNote: 1
Views and downloads (calculated since 10 Jun 2025)
Cumulative views and downloads
(calculated since 10 Jun 2025)
Total article views: 233 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
BibTeX
EndNote
232
0
1
233
0
0
HTML: 232
PDF: 0
XML: 1
Total: 233
BibTeX: 0
EndNote: 0
Views and downloads (calculated since 23 Sep 2024)
Cumulative views and downloads
(calculated since 23 Sep 2024)
Viewed (geographical distribution)
Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.
Total article views: 298 (including HTML, PDF, and XML)
Thereof 272 with geography defined
and 26 with unknown origin.
Total article views: 65 (including HTML, PDF, and XML)
Thereof 64 with geography defined
and 1 with unknown origin.
Total article views: 233 (including HTML, PDF, and XML)
Thereof 208 with geography defined
and 25 with unknown origin.
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to 4 months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to 4 months ahead in many locations, although, in general, the skill declines with increasing lead time.
Seasonal streamflow forecasts are an important component of flood risk management. Here, we...