Articles | Volume 28, issue 4
https://doi.org/10.5194/hess-28-973-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-28-973-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Yongjian Ding
CORRESPONDING AUTHOR
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Faxiang Shi
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Junhao Cui
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Yaping Chang
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Key Laboratory of Ecohydrology Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Tianding Han
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Qiudong Zhao
University of Chinese Academy of Sciences, Beijing, 100049, China
Key Laboratory of Ecohydrology Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Related authors
Guangxi Ding, Jia Qin, Shiqiang Zhang, Bingfeng Yang, Junhao Cui, Feiteng Wang, and Jianfeng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5989, https://doi.org/10.5194/egusphere-2025-5989, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As climate warming accelerates permafrost thaw, significant yet poorly understood shifts are occurring in water cycles across cold regions. This study synthesizes current knowledge through a comprehensive review, establishing an integrated framework that connects surface water, the active layer, and permafrost. We summarize how thawing affects runoff, groundwater, and ecosystems, and highlight key uncertainties. Our findings could enhance understanding of the permafrost hydrology.
Guangxi Ding, Jia Qin, Shiqiang Zhang, Bingfeng Yang, Junhao Cui, Feiteng Wang, and Jianfeng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5989, https://doi.org/10.5194/egusphere-2025-5989, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As climate warming accelerates permafrost thaw, significant yet poorly understood shifts are occurring in water cycles across cold regions. This study synthesizes current knowledge through a comprehensive review, establishing an integrated framework that connects surface water, the active layer, and permafrost. We summarize how thawing affects runoff, groundwater, and ecosystems, and highlight key uncertainties. Our findings could enhance understanding of the permafrost hydrology.
Cited articles
Bates, D. M. and Watts, D. G.: Nonlinear regression analysis and its applications, New York, Wiley, https://doi.org/10.1080/00401706.1990.10484638, 1988.
Bense, V. F., Ferguson, G., and Kooi, H.: Evolution of shallow groundwater flow systems in areas of degrading permafrost, Geophys. Res. Lett., 36, L22401, https://doi.org/10.1029/2009GL039225, 2009.
Benson, H. P.: Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem, J. Optimiz. Theory App., 112, 1–29, https://doi.org/10.1023/A:1013072027218, 2002.
Bosson, E., Selroos, J. O., Stigsson, M., Gustafsson, L. G., and Destouni, G.: Exchange and pathways of deep and shallow groundwater in different climate and permafrost conditions using the Forsmark site, Sweden, as an example catchment, Hydrogeol. J., 21, 225–237, https://doi.org/10.1007/s10040-012-0906-7, 2013.
Chang, J., Wang, G. X., Li, C. J., and Mao, T.: Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau, Sci. China Earth Sci., 58, 727–738, https://doi.org/10.1007/s11430-014-5009-y, 2015.
Chen, R. S., Wang, G., Yang, Y., Liu, J., Han, C., Song, Y., Liu, Z., and Kang, E.: Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China, J. Geophys. Res.-Atmos., 123, 3414–3442, https://doi.org/10.1002/2017JD027876, 2018.
Clark, I. D., Lauriol, B., Harwood, L., and Marschner, M.: Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada, Arct. Antarct. Alp. Res., 33, 62–69, https://doi.org/10.1080/15230430.2001.12003405, 2001.
Cheng, G. and Jin, H.: Groundwater in the permafrost regions on the Qinghai-Tibet plateau and its changes, Hydrogeol. Eng. Geol., 40, 1–11, 2013 (in Chinese with English abstract).
Cheng, G., Zhao, L., and Li, R.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet plateau, Chinese Sci. Bull., 64, 2783–2795, 2019 (in Chinese with English abstract).
Dugan, H. A., Lamoureux, S. F., Lafrenière, M. J., and Lewis, T.: Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed, Hydrol. Process., 23, 1514–1526, https://doi.org/10.1002/hyp.7285, 2009.
Fischer, B. M. C., Stahli, M., and Seibert, J.: Pre-event water contributions to runoff events of different magnitude in pre-alpine headwaters, Hydrol. Res., 48, 28–47, https://doi.org/10.2166/nh.2016.176. 2017.
Gao, Z., Niu, F. J., Wang, Y. B., Lin, Z., and Wang, W.: Suprapermafrost groundwater flow and exchange around a thermokarst lake on the Qinghai-Tibet Plateau, China, J. Hydrol., 593, 125882, https://doi.org/10.1016/j.jhydrol.2020.125882, 2021.
Ge, S., McKenzie, J., Voss, C., and Wu, Q.: Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation, Geophys. Res. Lett., 38, L14402, https://doi.org/10.1029/2011GL047911, 2011.
Gubareva, T. S., Gartsman, B. I., and Vasilenko, N. G.: Sources of formation of river discharge in the zone of multi-ear permafrost: assessment using the methods of tracer hydrology by the data of regime hydrochemical observations, Kriosfera Zemli, 22, 32–43, 2018.
Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active layer thickness at Circumpolar Active LayerMonitoring (CALM) sites in northern Alaska, 1995–2000, J. Geophys. Res., 108, 8168, https://doi.org/10.1029/2001JD000927, 2003.
Huang, K., Dai, J., Wang, G., Chang, J., Lu, Y., Song, C., Hu, Z., Ahmed, N., and Ye, R.: The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai-Tibet Plateau, Hydrol. Process., 34, 1475–1488, https://doi.org/10.1002/hyp.13677, 2020.
Koch, J. C.: Lateral and subsurface flows impact arctic coastal plain lake water budgets, Hydrol. Process., 30, 3918–3931, https://doi.org/10.1002/hyp.10917, 2016.
Koch, J. C., Sjöberg, Y., O'Donnell, J. A., Carey, M. P., Sullivan, P. F., and Terskaia, A.: Sensitivity of headwater streamflow to thawing permafrost and vegetation change in a warming Arctic, Environ. Res. Lett., 17, 044074, https://doi.org/10.1088/1748-9326/ac5f2d, 2022.
Krickov, I. V., Lim, A. G., Manasypov, R. M., Loiko, S. V., Shirokova, L. S., Kirpotin, S. N., Karlsson, J., and Pokrovsky, O. S.: Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect, Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, 2018.
Lafrenière, Melissa, J., and Lamoureux, S. F.: Effects of changing permafrost conditions on hydrological processes and fluvial fluxes, Earth-Sci. Rev., 191, 212–223, 2019.
Lebedeva, L.: Tracing surface and ground water with stable isotopes in a small permafrost research catchment, E3S Web Conf., 98, 12011, https://doi.org/10.1051/e3sconf/20199812011, 2019.
Liu, W., Fortier, R., Molson, J. W., and Lemieux, J.: A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada, Permafrost Periglac., 32, 468–483, https://doi.org/10.1002/ppp.2111, 2021.
Ma, R., Sun, Z., Hu, Y., Chang, Q., Wang, S., Xing, W., and Ge, M.: Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater, Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, 2017.
Manasypov, R. M., Lim, A. G., Kriñkov, I. V., Shirokova, L. S., Vorobyev, S. N., Kirpotin, S. N., and Pokrovsky, O. S.: Spatial and seasonal variations of C, nutrient, and metal concentration in Thermokarst Lakes of western Siberia across a permafrost gradient, Water, 12, 1830, https://doi.org/10.3390/w12061830, 2020.
Mavromatis, V., Prokushkin, A. S., Pokrovsky, O. S., Viers, J., and Korets, M. A.: Magnesium isotopes in permafrost-dominated Central Siberian larch forest watersheds, Geochim. Cosmochim. Ac., 147, 76–89, https://doi.org/10.1016/j.gca.2014.10.009, 2014.
O'Connor, M. T., Cardenas, M. B., Neilson, B. T., Nicholaides, K. D., and Kling, G. W.: Active layer groundwater flow: the interrelated effects of stratigraphy, thaw, and topography, Water Resour. Res., 55, 6555–6576, https://doi.org/10.1029/2018WR024636, 2019.
O'Neill, H. B., Roy-Leveillee, P., Lebedeva, L., and Ling, F.: Recent advances (2010–2019) in the study of taliks, Permafrost Periglac., 31, 346–357, https://doi.org/10.1002/ppp.2050, 2020.
Pettitt, A.: A non-parametric approach to the change-point problem, J. R. Stat. Soc. C-Appl., 28, 126–135, 1979.
Qin, J., Ding, Y. J., Han, T. D., Chang, Y., Shi, F., and You, Y.: The hydrothermal changes of permafrost active layer and their impact on summer rainfall-runoff processes in an alpine meadow watershed, Northwest China, Res. Cold Arid Reg., 14, 361–369, https://doi.org/10.1016/j.rcar.2023.02.005, 2022.
Quinton, W. L.: Runoff from hummock-covered Arctic tundra hillslopes in the continuous permafrost zone, The University of Saskatchewan, Canada, http://library.usask.ca/theses/available/etd-10212004-000512/unrestricted/nq24043.pdf (last access: 2 September 2023), 1997.
Raudina, T. V., Loiko, S. V., Lim, A., Manasypov, R. M., Shirokova, L. S., Istigechev, G. I., Kuzmina, D. M., Kulizhsky, S. P., Vorobyev, S. N., and Pokrovsky, O. S.: Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland, Sci. Total Environ., 634, 1004–1023, https://doi.org/10.1016/j.scitotenv.2018.04.059, 2018.
Rawlins, M. A.: Increasing freshwater and dissolved organic carbon flows to northwest Alaska's Elson lagoon, Environ. Res. Lett., 16, 105014, https://doi.org/10.1088/1748-9326/ac2288, 2021.
Renzheng, Y.: Effect of active layer freeze-thaw process on the dynamic of supra-permafrost groundwater in the permafrost region of the Qinghai-Tibet Plateau heartland, Lanzhou University, China, https://d.wanfangdata.com.cn/thesis/D017672379 (last access: 20 May 2023), 2019.
Renzheng, Y. and Juan, C.: Study of groundwater in permafrost regions of China: status and proces, J. Glaciol. Geocryol., 41, 183–196, https://doi.org/10.7522/j.issn.1000-0240.2019.0009, 2019.
Schuur, E. A. and Abbott, B.: Climate change: High risk of permafrost thaw, Nature, 480, 32–33, https://doi.org/10.1038/480032a, 2011.
Sebastian F. Z., Thomas, I., Wenxin, Z., and Bo, E.: Accelerated permafrost thaw and increased drainage in the active layer: Responses from experimental surface alteration, Cold Reg. Sci. Technol., 212, 103899, https://doi.org/10.1016/j.coldregions.2023.103899, 2023.
Sjöberg, Y., Frampton, A., and Lyon, S. W.: Using streamflow characteristics to explore permafrost thawing in northern Swedish catchments, Hydrogeol. J., 21, 121–131, https://doi.org/10.1007/s10040-012-0932-5, 2013.
Street, L. E., Dean, J. F., Billett, M. F., Baxter, R., Dinsmore, K. J., Lessels, J. S., Subke, J.-A., Tetzlaff, D., and Wookey, P. A.: Redox dynamics in the active layer of an Arctic headwater catchment; examining the potential for transfer of dissolved methane from soils to streamwater, J. Geophys. Res.-Biogeo., 121, 2776–2792, https://doi.org/10.1002/2016JG003387, 2016.
Throckmorton, H. M., Newman, B. D., Heikoop, J. M., Perkins, G. B., Feng, X., Graham, D. E., O'Malley, D., Vesselinov, V. V., Young, J., Wullschleger, S. D., and Wilson, C. J.: Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes, Hydrol. Process., 30, 4972–4986, https://doi.org/10.1002/hyp.10883, 2016.
Tregubov, O. D., Gartsman, B. I., Tarbeeva, A. M., Lebedeva, L. S., and Shepelev, V. V.: Spatial and temporal dynamics of sources and water regime of the Ugol'naya-Dionisiya river (Anadyr Lowland, Chukotka), Water Resour., 48, 521–531, https://doi.org/10.1134/S0097807821040187, 2021.
Tregubov, O. D., Gartsman, B. I., Shamov, V. V., Lebedeva, L. S., and Tarbeeva, A. M.: The effect of atmospheric pressure variations on the suprapermafrost groundwater level and runoff of Small Rivers in the Anadyr lowlands, Northeast Russia, Water, 14, 3066, https://doi.org/10.3390/w14193066, 2022.
Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States, Water Resour. Res., 48, 7524, https://doi.org/10.1029/2011WR011595, 2012.
Wang, G. X., Liu, G. S., Li, C. J., and Yang, Y.: The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region, Agr. Forest Meteorol., 162-163, 44–57, https://doi.org/10.1016/j.agrformet.2012.04.006, 2012.
Wei, C., Sheng, Y., Jichun, W., Shengting, W., and Shuai, M.: Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River, Adv. Water Sci., 29, 1–10, https://doi.org/10.14042/j.cnki.32.1309.2018.01.001, 2018.
Wei, C., Yu, S., Jichun, W., Yaling, C., Erxing, P., and Leonid, G.: Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau, Cold Reg. Sci. Technol., 184, 103236, https://doi.org/10.1016/j.coldregions.2021.103236, 2021.
Wellman, T. P., Voss, C. I., and Walvoord, M. A.: Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA), Hydrogeol. J., 21, 281–298, https://doi.org/10.1007/s10040-012-0941-4, 2013.
Wenbing, C., Li, W., Xun, Z., Fusheng, H., Zhiming, L., and Sihai, L.: A study of the geological environmental of suprapermafrost water in the headwater area of the Yellow River, Hydrogeol. Eng. Geol., 6, 6–10, https://doi.org/10.3969/j.issn.1000-3665.2003.06.002, 2003.
Woo, M. K. and Xia, Z.: Suprapermafrost groundwater seepage in gravelly terrain, resolute, NWT, Canada, Permafrost Periglac., 6, 57–72, https://doi.org/10.1002/ppp.3430060107, 1995.
Xu, H., Chang, J., Guo, L., and Sun, W.: Response of thermal-moisture condition within active layer in the hinterland of the Qinghai-Xizang Plateau to climate change, Plateau Meteorol., 40, 229–243, https://doi.org/10.7522/j.issn.1000-0534.2020.00071, 2021.
Yongjian, D., Shiqiang, Z., and Rensheng, C.: Introduction to hydrology in cold regions, The Science Publishing Company, Beijing, China, ISBN 978-7-03-052069-2, 2017.
Young, K. L. and Mingko, W.: Hydrological response of a patchy high arctic wetland, Nord. Hydrol., 31, 317–338, https://doi.org/10.2166/nh.2000.0019, 2000.
Zhang, M., Wen, Z., Li, D., Chou, Y., Zhou, Z., Zhou, F., and Lei, B.: Impact process and mechanism of summertime rainfall on thermal–moisture regime of active layer in permafrost regions of central Qinghai–Tibet Plateau, Sci. Total Environ., 796, 148970, https://doi.org/10.1016/j.scitotenv.2021.148970, 2021.
Zhao, L., Zou, D., Hu, G., Du, E., Pang, Q., and Xiao, Y.: Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau, Permafrost Periglac., 31, 396–405, https://doi.org/10.1002/ppp.2056, 2020.
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost...