Articles | Volume 28, issue 23
https://doi.org/10.5194/hess-28-5209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-5209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
Mohsen Amini Fasakhodi
CORRESPONDING AUTHOR
Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus
Hakan Djuma
Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus
Ioannis Sofokleous
Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus
Marinos Eliades
Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus
present address: Eratosthenes Center of Excellence, 82 Franklin Roosevelt, 3012 Lemesos, Cyprus
Adriana Bruggeman
Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus
Related authors
No articles found.
Christos Theocharidis, Marinos Eliades, Kyriacos Themistocleous, Kyriacos Neocleous, Charalampos Kontoes, and Diofantos Hadjimitsis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 879–884, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, 2025
Ioannis Sofokleous, George Zittis, Gerald Dörflinger, and Adriana Bruggeman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2478, https://doi.org/10.5194/egusphere-2025-2478, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We developed a new method to improve numerical models that predict future water availability under climate change. The method works across different regions and climate scenarios. Applying the method to mountain river basins in the Eastern Mediterranean showed that streamflow could drop by 39 % on average between 2030 and 2060, and by up to 70 % during the driest years. These findings help support better water planning in a changing climate.
Corrado Camera, Adriana Bruggeman, George Zittis, Ioannis Sofokleous, and Joël Arnault
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, https://doi.org/10.5194/nhess-20-2791-2020, 2020
Short summary
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Cited articles
Amini Fasakhodi, M., Djuma, H., Sofokleous, I., Eliades, M., and Bruggeman, A.: Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem, Zenodo [data set], https://doi.org/10.5281/zenodo.10900317, 2024.
Ares, A. and Peinemann, N.: Fine-root distribution of coniferous plantations in relation to site in southern Buenos Aires, Argentina, Can. J. Forest Res., 22, 1575–1582, 1992.
Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and Peters-Lidard, C. D.: Parameter sensitivity of the Noah-MP land surface model with dynamic vegetation, J. Hydrometeorol., 19, 815–830, https://doi.org/10.1175/JHM-D-17-0205.1, 2018.
Bagnoli, F., Vendramin, G. G., Buonamici, A., Doulis, A. G., González‐Martínez, S. C., La Porta, N., Magri, D., Raddi, P., Sebastiani, F. and Fineschi, S.: Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data, Mol. Ecol., 18, 2276–2286, https://doi.org/10.1111/j.1365-294X.2009.04182.x, 2009.
Barlage, M., Tewari, M., Chen, F., Miguez-Macho, G., Yang, Z. L., and Niu, G. Y.: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP, Climatic Change, 129, 485–498, https://doi.org/10.1007/s10584-014-1308-8, 2015.
Boydak, M.: Silvicultural characteristics and natural regeneration of Pinus brutia Ten. – A review, Plant Ecol., 171, 153–163, https://doi.org/10.1023/B:VEGE.0000029373.54545.d2, 2004.
Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., and Bleby, T. M.: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants, Tree Physiol., 21, 589–598, https://doi.org/10.1093/treephys/21.9.589, 2001.
Cai, X., Yang, Z. L., Xia, Y., Huang, M., Wei, H., Leung, L. R., and Ek, M. B.: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS testbed, J. Geophys. Res.-Atmos., 119, 13751–13770, https://doi.org/10.1002/2014JD022113, 2014.
Chambel, M. R., Climent, J., Pichot, C., and Ducci, F.: Mediterranean Pines (Pinus halepensis Mill. and brutia Ten.), in: Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives, edited by: Pâques, L. E., Springer Netherlands, Dordrecht, 229–265, https://doi.org/10.1007/978-94-007-6146-9_5, 2013.
Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., Livneh, B., Lin, C., Miguez‐Macho, G., Niu, G. Y., Wen, L., and Yang, Z. L.: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study, J. Geophys. Res.-Atmos., 119, 13–795, https://doi.org/10.1002/2014JD022167, 2014.
Chen, J., Chen, B., Black, T. A., Innes, J. L., Wang, G., Kiely, G., Hirano, T., and Wohlfahrt, G.: Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models, J. Geophys. Res.-Biogeo., 118, 1715–1731, https://doi.org/10.1002/2013JG002446, 2013.
Chen, L., Li, Y., Chen, F., Barr, A., Barlage, M., and Wan, B.: The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest, Atmos. Chem. Phys., 16, 8375–8387, https://doi.org/10.5194/acp-16-8375-2016, 2016.
Corona, R. and Montaldo, N.: On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock, J. Hydrol. Hydromech., 68, 338–350, https://doi.org/10.2478/johh-2020-0022, 2020.
Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, O., Spieler, D., and Prykhodko, V.: Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resour. Res., 51, 6417–6441, https://doi.org/10.1002/2015WR016907, 2015.
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S. and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016.
Del Campo, A. D., Fernandes, T. J., and Molina, A. J.: Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management?, Eur. J. Forest Res., 133, 879–894, https://doi.org/10.1007//s10342-014-0805-7, 2014.
Djuma, H., Bruggeman, A., Eliades, M., and Zoumides, C.: Water use of drought-tolerant coniferous trees (Pinus brutia and Cupressus sempervirens) in a semi-arid environment, Ecohydrology, accepted, 2024.
Eliades, M., Bruggeman, A., Lubczynski, M. W., Christou, A., Camera, C., and Djuma, H.: The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years, J. Hydrol., 562, 712–724, https://doi.org/10.1016/j.jhydrol.2018.05.048, 2018.
Eliades, M., Bruggeman, A., Djuma, H., Christou, A., Rovanias, K., and Lubczynski, M. W.: Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest, Agr. Forest Meteorol., 313, 108755, https://doi.org/10.1016/j.agrformet.2021.108755, 2022.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Ganopoulos, I., Aravanopoulos, F., Madesis, P., Pasentsis, K., Bosmali, I., Ouzounis, C., and Tsaftaris, A.: Taxonomic identification of Mediterranean pines and their hybrids based on the High-Resolution Melting (HRM) and trnL approaches: from cytoplasmic inheritance to timber tracing, PLoS One, 8, e60945, https://doi.org/10.1371/journal.pone.0060945, 2013.
Gochis, D. J., Barlage, M., Cabell, R., Casali, M., Dugger, A., FitzGerald, K., McAllister, M., McCreight, J., RafieeiNasab, A., Read, L., Sampson, K., Yates, D., and Zhang, Y.: The WRF-Hydro® modeling system technical description, (Version 5.1.1), NCAR Technical Note, 108 pp., https://ral.ucar.edu/projects/wrf_hydro/documentation/wrf-hydro-v511-documentation (last access: 19 November 2024), 2020.
He, C., Barlage, M., Valayamkunnath, P., Gill, D., Mocko, D., and Chen, F.: NCAR/noahmp: Release of v5.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.7901855, 2023.
Helman, D., Lensky, I. M., Yakir, D., and Osem, Y.: Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests, Glob. Change Biol., 23, 2801–2817, https://doi.org/10.1111/gcb.13551, 2017a.
Helman, D., Lensky, I. M., Osem, Y., Rohatyn, S., Rotenberg, E., and Yakir, D.: A biophysical approach using water deficit factor for daily estimations of evapotranspiration and CO2 uptake in Mediterranean environments, Biogeosciences, 14, 3909–3926, https://doi.org/10.5194/bg-14-3909-2017, 2017b.
Hogue, T. S., Bastidas, L. A., Gupta, H. V., and Sorooshian, S.: Evaluating model performance and parameter behavior for varying levels of land surface model complexity, Water Resour. Res., 42, W08430, https://doi.org/10.1029/2005WR004440, 2006.
Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A., Sicard, P., and Paoletti, E.: Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests, Agr. Forest Meteorol., 234, 212–221, https://doi.org/10.1016/j.agrformet.2017.01.005, 2017.
Klein, T., Rotenberg, E., Cohen‐Hilaleh, E., Raz‐Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S., and Yakir, D.: Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest, Ecohydrology, 7, 409–419, https://doi.org/10.1002/eco.1360, 2014.
Kostopoulou, P., Radoglou, K., Dini-Papanastasi, O., and Spyroglou, G.: Enhancing planting stock quality of Italian cypress (Cupressus sempervirens L.) by pre-cultivation in mini-plugs, Ecol. Eng., 36, 912–919, https://doi.org/10.1016/j.ecoleng.2010.04.004, 2010.
Kumar, S. V., Wang, S., Mocko, D. M., Peters-Lidard, C. D., and Xia, Y.: Similarity assessment of land surface model outputs in the North American Land Data Assimilation System, Water Resour. Res., 53, 8941–8965, https://doi.org/10.1002/2017WR020635, 2017.
Larsen, M. A., Refsgaard, J. C., Jensen, K. H., Butts, M. B., Stisen, S., and Mollerup, M.: Calibration of a distributed hydrology and land surface model using energy flux measurements, Agr. Forest Meteorol., 217, 74–88, https://doi.org/10.1016/j.agrformet.2015.11.012, 2016.
Liu, Y., Zhuang, Q., Miralles, D., Pan, Z., Kicklighter, D., Zhu, Q., He, Y., Chen, J., Tchebakova, N., Sirin, A., Niyogi, D., Niyogi, D., and Melillo, J.: Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates, J. Geophys. Res.-Atmos., 120, 2647–2660, https://doi.org/10.1002/2014JD022531, 2015.
Lu, S., Guo, W., Ge, J., and Zhang, Y.: Impacts of land surface parameterizations on simulations over the arid and semiarid regions: the case of the loess plateau in China, J. Hydrometeorol., 23, 891–907, https://doi.org/10.1175/JHM-D-21-0143.1, 2022.
Ma, N.: Modeling land-atmosphere energy and water exchanges in the typical alpine grassland in Tibetan Plateau using Noah-MP, Journal of Hydrology Regional Studies, 50, 101596, https://doi.org/10.1016/j.ejrh.2023.101596, 2023.
Meir, P. and Woodward, F. I.: Amazonian rain forests and drought: response and vulnerability, New Phytol., 187, 553–557, 2010.
Molina, A. J. and del Campo, A. D.: The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations, Ecol. Manage., 269, 206–213, https://doi.org/10.1016/j.foreco.2011.12.037, 2012.
Montaldo, N., Corona, R., Curreli, M., Sirigu, S., Piroddi, L., and Oren, R.: Rock water as a key resource for patchy ecosystems on shallow soils: Digging deep tree clumps subsidize surrounding surficial grass, Earth's Future, 9, e2020EF001870, https://doi.org/10.1029/2020EF001870, 2021.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Rog, I., Tague, C., Jakoby, G., Megidish, S., Yaakobi, A., Wagner, Y., and Klein, T.: Interspecific soil water partitioning as a driver of increased productivity in a diverse mixed Mediterranean forest, J. Geophys. Res.-Biogeo., 126, e2021JG006382, https://doi.org/10.1029/2021JG006382, 2021.
Rohatyn, S., Rotenberg, E., Ramati, E., Tatarinov, F., Tas, E., and Yakir, D.: Differential impacts of land use and precipitation on “ecosystem water yield”, Water Resour. Res., 54, 5457–5470, https://doi.org/10.1029/2017WR022267, 2018.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A description of the advanced research WRF version 4, NCAR tech. note ncar/tn-556+ str, 145 pp., https://doi.org/10.5065/1dfh-6p97, 2019.
Simpson, J. E., Holman, F. H., Nieto, H., El-Madany, T. S., Migliavacca, M., Martin, M. P., Burchard-Levine, V., Cararra, A., Blöcher, S., Fiener, P., and Kaplan, J. O.: UAS-based high resolution mapping of evapotranspiration in a Mediterranean tree-grass ecosystem, Agr. Forest Meteorol., 321, 108981, https://doi.org/10.1016/j.agrformet.2022.108981, 2022.
Sofokleous, I., Bruggeman, A., Michaelides, S., Hadjinicolaou, P., Zittis, G., and Camera, C.: Comprehensive Methodology for the Evaluation of High-Resolution WRF Multiphysics Precipitation Simulations for Small, Topographically Complex Domains, J. Hydrometeorol., 22, 1169–1186, https://doi.org/10.1175/JHM-D-20-0110.1, 2021.
Sofokleous, I., Bruggeman, A., Camera, C., and Eliades, M.: Grid-based calibration of the WRF-Hydro with Noah-MP model with improved groundwater and transpiration process equations, J. Hydrology, 617, 128991, https://doi.org/10.1016/j.jhydrol.2022.128991, 2023.
Sun, R., Duan, Q., and Wang, J.: Understanding the spatial patterns of evapotranspiration estimates from land surface models over China, J. Hydrol., 595, 126021, https://doi.org/10.1016/j.jhydrol.2021.126021, 2021.
Ungar, E. D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., and Schiller, G.: Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management, Forest Ecol. Manag., 298, 39–51, https://doi.org/10.1016/j.foreco.2013.03.003, 2013.
Vicente E., Vilagrosa A., Ruiz-Yanetti S., Manrique-Alba À., González-Sanchís M., Moutahir H., Chirino E., Del Campo A., and Bellot J.: Water balance of Mediterranean Quercus ilex L. and Pinus halepensis Mill. forests in semiarid Climates: A review in a Climate change context, Forests, 9, 426, https://doi.org/10.3390/f9070426, 2018.
Wang, S., Pan, M., Mu, Q., Shi, X., Mao, J., Brummer, C., Jassal, R. S., Krishnan, P., Li, J., and Black, T. A.: Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada, J. Hydrometeorol., 16, 1540–1560, https://doi.org/10.1175/JHM-D-14-0189.1, 2015.
Yang, Z. L., Cai, X., Zhang, G., Tavakoly, A. A., Jin, Q., Meyer, L. H., and Guan, X.: The community Noah land surface model with multi-parameterization options (Noah-MP), Technical Description, The University of Texas at Austin, Austin, TX, USA, https://doi.org/10.13140/RG.2.1.4925.5921, 2011.
Yaseef, N. R., Yakir, D., Rotenberg, E., Schiller, G., and Cohen, S.: Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes, Ecohydrology, 3, 143–154, https://doi.org/10.1002/eco.65, 2010.
Zhan, S., Song, C., Wang, J., Sheng, Y., and Quan, J.: A global assessment of terrestrial evapotranspiration increases due to surface water area change, Earths Future 7, 266–282, https://doi.org/10.1029/2018EF001066, 2019.
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., and Pang, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 6, 19124, https://doi.org/10.1038/srep19124, 2016.
Zheng, D., Van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A. Y., and Wang, X.: Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP, Water Resour. Res., 51, 5735–5755, https://doi.org/10.1002/2015WR017115, 2015.
Short summary
This study examined the water use of pine and cypress trees in a semiarid Mediterranean forest environment. We applied a widely used land surface model (Noah-MP) to simulate the water balance of the ecosystem. We found good modeling results for soil moisture. However, the model underestimated the transpiration of the trees during the dry summer months. These findings indicate that more research is needed to improve the modeling of ecosystem responses to climate and land use change.
This study examined the water use of pine and cypress trees in a semiarid Mediterranean forest...