Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-49-2024
https://doi.org/10.5194/hess-28-49-2024
Research article
 | 
03 Jan 2024
Research article |  | 03 Jan 2024

How to account for irrigation withdrawals in a watershed model

Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez

Data sets

SENTINEL-2, ESA's Optical High-Resolution ESA https://theia.cnes.fr/atdistrib/rocket/#/search?collection=SENTINEL2

Shuttle Radar Topography Mission 1 Arc-Second Global USGS https://doi.org/10.5066/F7PR7TFT

Référentiel Régional Pédologique GisSol https://www.gissol.fr/donnees/liens-vers-les-referentiels-regionaux-pedologiques-5634

Registre Parcellaire graphique IGN https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/

Theia OSO Land Cover Map J. Inglada et al. https://doi.org/10.5281/zenodo.3613415

Enquête sur les pratiques culturales en grandes cultures et prairies 2017 Agreste https://agreste.agriculture.gouv.fr/agreste-web/disaron/Chd2009/detail/

Model code and software

Customized SWAT+ model to include remote sensing NDVI data Elisabeth Brochet https://github.com/ElisabethJustin/SWATplus-NDVI

Download
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.