Articles | Volume 28, issue 21
https://doi.org/10.5194/hess-28-4797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of upscaling methodologies for daily crop transpiration using sap flows and two-source energy balance models in almonds under different water statuses and production systems
Manuel Quintanilla-Albornoz
CORRESPONDING AUTHOR
Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology, Fruitcentre, Parc AgroBiotech, Lleida, 25003, Spain
Xavier Miarnau
Fruit Production Program, Institute of Agrifood Research and Technology, Fruitcentre, Parc AgroBiotech, Lleida, 25003, Spain
Ana Pelechá
Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology, Fruitcentre, Parc AgroBiotech, Lleida, 25003, Spain
Héctor Nieto
Institute of Agricultural Sciences, ICA-CSIC, Madrid, 28006, Spain
Joaquim Bellvert
Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology, Fruitcentre, Parc AgroBiotech, Lleida, 25003, Spain
Related authors
No articles found.
Radoslaw Guzinski, Héctor Nieto, José Miguel Barrios, Walid Ghariani, Francoise Gellens-Meulenberghs, Jan De Pue, and Roselyne Lacaze
EGUsphere, https://doi.org/10.5194/egusphere-2025-4342, https://doi.org/10.5194/egusphere-2025-4342, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present the design of an upcoming actual evapotranspiration product which will join the Copernicus Land Monitoring Service portfolio. The product relies on free and open data and advanced modelling methods and will have global coverage with a 300 m pixel resolution. A prototype dataset was compared against measurements from 104 geographically distributed stations, achieving good results. Such product will find multiple uses, including in water resources management and food security fields.
Cited articles
Alarcón, J., Ortuño, M., Nicolás, E., Torres, R., and Torrecillas, A.: Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees, Biol. Plant. 49, 527–532, https://doi.org/10.1007/s10535-005-0046-1, 2005.
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crops evapotranspiration: guidelines forcomputing crop water requirements. FAO Irrigation and Drainage Paper No. 56.FAO, Rome, Italy, 300, ISBN 92-5-104219-5, https://www.fao.org/4/x0490e/x0490e00.htm (last access: 13 December 2023), 1998.
Allen, R., Tasumi, M., Morse, A., Trezza, R., Wright, J., Bastiaanssen, W., Kramber, W., Lorite, I., and Robison, C. W.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) – Applications, J. Irrig. Drain. Eng., 133, 395–406, https://doi.org/10.1061/(asce)0733-9437(2007)133:4(395), 2007.
Anderson, M., Norman, J., Diak, G., Kustas, W., and Mecikalski, J.: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ., 60, 195–216, https://doi.org/10.1016/S0034-4257(96)00215-5, 1997.
Anderson, M., Yang, Y., Xue, J., Knipper, K., Yang, Y., Gao, F., Hain, C., Kustas, W., Cawse-Nicholson, K., Hulley, G., Fisher, J., Alfieri, J., Meyers, T., Prueger, J., Baldocchi, D., and Rey-Sanchez, C.: Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales, Remote Sens. Environ., 252, 112189, https://doi.org/10.1016/j.rse.2020.112189, 2021.
Basilio, R., Hook, S., Zoffoli, S., and Buongiorno, M.: Surface Biology and Geology (SBG) Thermal Infrared (TIR) Free -Flyer Concept.: 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 01–09, https://doi.org/10.1109/AERO53065.2022.9843292, 2022.
Bastiaanssen, W., Pelgrum, H., Wang, J., Ma, Y., and Moreno, J. F.: A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation, J. Hydrol., 212, 213–229, https://doi.org/10.1016/S0022-1694(98)00254-6, 1998.
Bellvert, J., Zarco-Tejada, P., Girona, J., and Fereres, E.: Mapping crop water stress index in a “Pinot-noir” vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle, Precis. Agric., 15, 361–376, https://doi.org/10.1007/s11119-013-9334-5, 2014.
Brutsaert, W. and Sugita M.: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation, J. Geophys. Res., 97, 18377–18382, https://doi.org/10.1029/92JD00255, 1992.
Cammalleri, C., Anderson, M. C., and Kustas, W. P.: Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications, Hydrol. Earth Syst. Sci., 18, 1885–1894, https://doi.org/10.5194/hess-18-1885-2014, 2014.
Campbell, G. and Norman, J.: An introduction to environmental biophysics, second ed., Springer New York, NY, 286 pp., https://doi.org/10.1007/978-1-4612-1626-1, 1998.
Crago, R. and Brutsaert, W.: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio, J. Hydrol., 178, 241–255, https://doi.org/10.1016/0022-1694(95)02803-x, 1996.
Castel, J. and Fereres, E.: Responses of Young Almond Trees to Two Drought Periods in the Field, J. Hortic. Sci., 57, 175–187, https://doi.org/10.1080/00221589.1982.11515038, 1982.
Chaves, M., Pereira, J. S., Maroco, J., Rodrigues, M., Ricardo, C., Osório, M., Carvalho, I., Faria, T., and Pinheiro, C.: How plants cope with water stress in the field. Photosynthesis and growth, Ann. Bot., 89, 907–916, https://doi.org/10.1093/aob/mcf105, 2002.
Colaizzi, P., Evett, S., Howell, T., and Tolk, J.: Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements, American Society of Agricultural and Biological Engineers, 49, 1409–1418, https://doi.org/10.13031/2013.22056, 2006.
Delogu, E., Boulet, G., Olioso, A., Coudert, B., Chirouze, J., Ceschia, E., Le Dantec, V., Marloie, O., Chehbouni, G., and Lagouarde, J.-P.: Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass, Hydrol. Earth Syst. Sci., 16, 2995–3010, https://doi.org/10.5194/hess-16-2995-2012, 2012.
Drexler, J., Snyder, R., Spano, D., and Paw U.: A review of models and micrometeorological methods used to estimate wetland evapotranspiration, Hydrol. Process., 18, 2071–2101, https://doi.org/10.1002/hyp.1462, 2004.
Escalona, J., Flexas, J., and Medrano, H.: Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines, Aust. J. Plant Physiol., 26, 421–433, https://doi.org/10.1071/PP99019, 1999.
Espadafor, M., Orgaz, F., Testi, L., Lorite, I., and Villalobos, F.: Transpiration of young almond trees in relation to intercepted radiation, Irrigation Sci., 33, 265–275, https://doi.org/10.1007/s00271-015-0464-6, 2015.
Evett, S. and Tolk, J.: Introduction: Can water use efficiency be modeled well enough to impact crop management?, Agron. J., 101, 423–425, https://doi.org/10.2134/agronj2009.0038xs, 2009.
Fernandez, J., Palomo, M., Díaz-Espejo, A., Clothier, B., Green, S., Girón, I., and Moreno, F.: Heat-pulse measurements of sap flow in olives for automating irrigation: tests root flow and diagnostics of water stress, Agr. Water Manage., 51, 99–123, https://doi.org/10.1016/S0378-3774(01)00119-6, 2001.
Forster, M.: How Reliable Are Heat Pulse Velocity Methods for Estimating Tree Transpiration?, Forests, 8, 350, https://doi.org/10.3390/f8090350, 2017.
Gao, R., Torres-Rua, A., Aboutalebi, M., White, W., Anderson, M., Kustas, W., Agam, N., Alsina, M., Alfieri, J., Hipps, L., Dokoozlian, N., Nieto, H., Gao, F., McKee, L., Prueger, J., Sanchez, L., Mcelrone, A., Bambach-Ortiz, N., Coopmans, C., and Gowing, I.: LAI estimation across California vineyards using sUAS multi-seasonal multi-spectral, thermal, and elevation information and machine learning, Irrigation Sci., 40, 731–759, https://doi.org/10.1007/s00271-022-00776-0, 2022.
Gao, R., Torres-Rua, A., Nieto, H., Zahn, E., Hipps, L., Kustas, W., Alsina, M., Bambach, N., Castro, S., Prueger, J., Alfieri, J., Mckee, L., White, W., Gao, F., Mcelrone, A., Anderson, M., Knipper, K., and Coopmans, C.: ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards, Remote Sens., 15, 756, https://doi.org/10.3390/rs15030756, 2023.
Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., and Duchemin, B.: Analysis of evaporative fraction diurnal behaviour, Agr. Forest Meteorol., 143, 13–29, https://doi.org/10.1016/j.agrformet.2006.11.002, 2007.
Goldhamer, D. A. and Fereres, E.: Establishing an almond water production function for California using long-term yield response to variable irrigation, Irrigation Sci., 35, 169–179, https://doi.org/10.1007/s00271-016-0528-2, 2017.
Gómez-Candón, D., Bellvert, J., and Royo, C.: Performance of the Two-Source Energy Balance (TSEB) Model as a Tool for Monitoring the Response of Durum Wheat to Drought by High-Throughput Field Phenotyping, Front. Plant Sci., 12, 658357, https://doi.org/10.3389/fpls.2021.658357, 2021.
Hoedjes, J., Chehbouni, A., Jacob, F., Ezzahar, J., and Boulet, G.: Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco, J. Hydrol., 354, 53–64, https://doi.org/10.1016/j.jhydrol.2008.02.016, 2008.
Iglesias, I. and Echeverria, G.: Scientia Horticulturae Current situation, trends and challenges for efficient and sustainable peach production, Sci. Hortic., 296, 110899, https://doi.org/10.1016/j.scienta.2022.110899, 2022.
Jackson, R., Hatfield, J., Reginato, R., Idso, S., and Pinter, P.: Estimation of daily evapotranspiration from one time-of-day measurements, Agr. Water Manage., 7, 351–362, https://doi.org/10.1016/0378-3774(83)90095-1, 1983.
Jiang, L., Zhang, B., Han, S., Chen, H., and Wei, Z.: Upscaling evapotranspiration from the instantaneous to the daily time scale: Assessing six methods including an optimized coefficient based on worldwide eddy covariance flux network, J. Hydrol., 596, 126135, https://doi.org/10.1016/j.jhydrol.2021.126135, 2021.
Jofre-Čekalović, C., Nieto, H., Girona, J., Pamies-Sans, M., and Bellvert, J.: Accounting for Almond Crop Water Use under Different Irrigation Regimes with a Two-Source Energy Balance Model and Copernicus-Based Inputs, Remote Sens., 14, 2106, https://doi.org/10.3390/rs14092106, 2022.
Kalma, J., McVicar, T., and McCabe, M.: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29, 421–469, https://doi.org/10.1007/s10712-008-9037-z, 2008.
Knipper, K., Anderson, M., Bambach, N., Kustas, W., Gao, F., Zahn, E., Hain, C., McElrone, A., Belfiore, O., Castro, S., Alsina, M., and Saa, S.: Evaluation of Partitioned Evaporation and Transpiration Estimates within the DisALEXI Modeling Framework over Irrigated Crops in California, Remote Sens., 15, 68, https://doi.org/10.3390/rs15010068, 2023.
Koetz, B., Bastiaanssen, W., Berger, M., Defourney, P., Bello, U. Del, Drusch, M., Drinkwater, M., Duca, R., Fernandez, V., Ghent, D., Guzinski, R., Hoogeveen, J., Hook, S., Lagouarde, J. P., Lemoine, G., Manolis, I., Martimort, P., Masek, J., Massart, M., Notarnicola, C., Sobrino, J., and Udelhoven, T.: High spatio-temporal resolution land surface temperature mission – A Copernicus candidate mission in support of agricultural monitoring, Int. Geosci. Remote Sens. Symp., 2018-July, 8160–8162, https://doi.org/10.1109/IGARSS.2018.8517433, 2018.
Kustas, W. and Norman, J.: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol., 94, 13–29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999.
Kustas, W. and Anderson, M.: Advances in thermal infrared remote sensing for land surface modeling, Agr. Forest Meteorol., 149, 2071–2081, https://doi.org/10.1016/j.agrformet.2009.05.016, 2009.
Kustas, W., Alfieri, J., Nieto, H., Wilson, T., Gao, F., and Anderson, M.: Utility of the two-source energy balance (TSEB) model in vine and interrow flux partitioning over the growing season, Irrigation Sci. 37, 375–388, https://doi.org/10.1007/s00271-018-0586-8, 2019.
Kustas, W., Nieto, H., Garcia-Tejera, O., Bambach, N., McElrone, A., Gao, F., Alfieri, J., Hipps, L., Prueger, J., Torres-Rua, A., Anderson, M., Knipper, K., Alsina, M., McKee, L., Zahn, E., Bou-Zeid, E., and Dokoozlian, N.: Impact of advection on two-source energy balance (TSEB) canopy transpiration parameterization for vineyards in the California Central Valley, Irrigation Sci., 40, 575–591, https://doi.org/10.1007/s00271-022-00778-y, 2022.
Lagouarde, J., Bhattacharya, B., Crébassol, P., Gamet, P., Babu, S., Boulet, G., Briottet, X., Buddhiraju, K., Cherchali, S., Dadou, I., Dedieu, G., Gouhier, M., Hagolle, O., Irvine, M., Jacob, F., Kumar, A., Kumar, K., Laignel, B., Mallick, K., Murthy, C., Olioso, A., Ottlé, C., Pandya, M., Raju, P., Roujean, J., Sekhar, M., Shukla, M., Singh, S., Sobrino, J., and Ramakrishnan, R.: The Indian-French Trishna mission: Earth observation in the thermal infrared with high spatio-temporal resolution, Int. Geosci. Remote Sens. Symp., 2018-July, 4078–4081, https://doi.org/10.1109/IGARSS.2018.8518720, 2018.
Lhomme, J.-P. and Elguero, E.: Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model, Hydrol. Earth Syst. Sci., 3, 259–270, https://doi.org/10.5194/hess-3-259-1999, 1999.
López-Bernal, Á., Alcántara, E., Testi, L., and Villalobos, F.: Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes, Tree Physiol., 30, 1536–1544, https://doi.org/10.1093/treephys/tpq095, 2010.
López-López, M., Espadador, M., Testi, L., Lorite, I., Orgaz, F., and Fereres, E.: Water use of irrigated almond trees when subjected to water deficits, Agr. Water Manage., 195, 84–93, https://doi.org/10.1016/j.agwat.2017.10.001, 2018.
McCutchan, H. and Shackel, K.: Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French), J. Am. Soc. Hortic. Sci., 117, 607–611, 1992.
Mwangi, S., Boulet, G., and Olioso, A.: Assessment of an extended SPARSE model for estimating evapotranspiration from directional thermal infrared data, Agr. Forest Meteorol., 317, 108882, https://doi.org/10.1016/j.agrformet.2022.108882, 2022.
Mwangi, S., Boulet, G., Le Page, M., Gastellu-Etchegorry, J., Bellvert, J., Lemaire, B., Fanise, P., Roujean, J., and Olioso, A.: Observation and Assessment of Model Retrievals of Surface Exchange Components over a Row Canopy Using Directional Thermal Data, IEEE J. Sel. Top. Appl., 16, 7343–7356, https://doi.org/10.1109/JSTARS.2023.3297709, 2023.
Nassar, A., Torres-Rua, A., Kustas, W., Nieto, H., McKee, M., Hipps, L., Stevens, D., Alfieri, J., Prueger, J., Alsina, M., McKee, L., Coopmans, C., Sanchez, L., and Dokoozlian, N.: Influence of model grid size on the estimation of surface fluxes using the two source energy balance model and sUAS imagery in vineyards, Remote Sens., 12, 342, https://doi.org/10.3390/rs12030342, 2020.
Nassar, A., Torres-Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M., White, W., McKee, L., Coopmans, C., Sanchez, L., and Dokoozlian, N.: Assessing daily evapotranspiration methodologies from one-time-of-day Suas and EC information in the GRAPEX project, Remote Sens., 13, 2887, https://doi.org/10.3390/rs13152887, 2021.
Nieto, H., Kustas, W., Torres-Rua, A., Alfieri, J., Gao, F., Anderson, M., White, W., Song, L., Alsina, M., Prueger, J., McKee, M., Elarab, M., and McKee, L.: Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery, Irrigation Sci., 37, 389–406, https://doi.org/10.1007/s00271-018-0585-9, 2019.
Nieto, N., Guzinski, R., Graae, P., Jonas, ClaireBrenner, Mike, and gabrielmini: hectornieto/pyTSEB: v2.2 (v.2.2), Zenodo [code], https://doi.org/10.5281/zenodo.8134956, 2023.
Norman, J., Kustas, W., and Humes, K.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Noun, G., Lo Cascio, M., Spano, D., Marras, S., and Sirca, C.: Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review, Agronomy, 12, 2127, https://doi.org/10.3390/agronomy12092127, 2022.
Olivo, N., Girona, J., and Marsal, J.: Seasonal sensitivity of stem water potential to vapour pressure deficit in grapevine, Irrigation Sci., 27, 175–182, https://doi.org/10.1007/s00271-008-0134-z, 2009.
Overgaard, J., Rosbjerg, D., and Butts, M. B.: Land-surface modelling in hydrological perspective – a review, Biogeosciences, 3, 229–241, https://doi.org/10.5194/bg-3-229-2006, 2006.
Parry, C., Nieto, H., Guillevic, P., Agam, N., Kustas, W., Alfieri, J., McKee, L., and McElrone, A.: An intercomparison of radiation partitioning models in vineyard canopies, Irrigation Sci., 37, 239–252, https://doi.org/10.1007/s00271-019-00621-x, 2019.
Peddinti, S. and Kisekka, I.: Estimation of turbulent fluxes over almond orchards using high-resolution aerial imagery with one and two-source energy balance models, Agr. Water Manage., 269, 107671, https://doi.org/10.1016/j.agwat.2022.107671, 2022.
Poni, S., Bernizzoni, F., Civardi, S., Gatti, M., Porro, D., and Camin, F.: Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy), Agr. Ecosyst. Environ., 129, 97–106, https://doi.org/10.1016/j.agee.2008.07.009, 2009.
Qi, J., Chehbouni, A., Huete, A., Kerr, Y., and Sorooshian, S.: A modified soil adjusted vegetation index, Remote Sens. Environ., 48, 119–126, https://doi.org/10.1016/0034-4257(94)90134-1, 1994.
Quintanilla-Albornoz, M., Miarnau, X., Pelechá, A., Casadesús, J., García-Tejera, O., and Bellvert, J.: Evaluation of transpiration in different almond production systems with two-source energy balance models from UAV thermal and multispectral imagery, Irrigation Sci., https://doi.org/10.1007/s00271-023-00888-1, 2023.
Romero, P. and Botía, P.: Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almond trees under semiarid conditions, Environ. Exp. Bot., 56, 158–173, https://doi.org/10.1016/j.envexpbot.2005.01.012, 2006.
Sánchez, J, Simón L., González-Piqueras. J., and Montoya F.: Monitoring Crop Evapotranspiration and Transpiration/Evaporation Partitioning in a Drip-Irrigated, Water-Switzerland, 13, 2073, https://doi.org/10.3390/w13152073, 2021.
Shuttleworth, W. and Wallace, J.: Evaporation from sparse crops-an energy combination theory, Q. J. Roy. Meteor. Soc., 111, 839–855, https://doi.org/10.1002/qj.49711146910, 1985.
Shuttleworth, W., Gurney, R., Hsu, A., and Ormsby, J.: FIFE: the variation in energy partition at surface flux sites, Remote Sens. Large-Scale Glob. Porc. (IAHS Publ.), 186, 67–74, 1989.
Smith, D. and Allen, S.: Measurement of sap flow in plant stems, J. Exp. Bot., 47, 1833–1844, https://doi.org/10.1093/jxb/47.12.1833, 1996.
Tian, T. and Schreiner, R.: Appropriate time to measure leaf and stem water potential in north-south oriented, vertically shoot-positioned vineyards, Am. J. Enol. Viticult., 72, 64–72, https://doi.org/10.5344/ajev.2020.20020, 2021.
Timmermans, W., Kustas, W., Anderson, M., and French, A.: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ., 108, 369–384, https://doi.org/10.1016/j.rse.2006.11.028, 2007.
Trezza, R.: Evapotranspiration using a satellite-based surface energy balance with standardized ground control, Doctoral dissertation, Utah State University, https://doi.org/10.26076/675a-b84b, 2002.
Tuzet, A., Perrier A., and Leuning R.: A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ., 26, 1097–1116, https://doi.org/10.1046/j.1365-3040.2003.01035.x, 2003.
Van Niel. T., McVicar T., Roderick M., Van Dijk A., Renzullo L., Van Gorsel E.: Correcting for systematic error in satellite-derived latent heat flux due to assumptions in temporal scaling: Assessment from flux tower observations, J. Hydrol., 409, 140–148, https://doi.org/10.1016/j.jhydrol.2011.08.011, 2011.
Van Niel, T., McVicar, T., Roderick, M., Van Dijk, A., Beringer, J., Hutley, L., and Van Gorsel, E.: Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias, J. Hydrol., 468–469, 35–46, https://doi.org/10.1016/j.jhydrol.2012.08.005, 2012.
Villalobos, F., Testi, L., and Moreno-Perez, M.: Evaporation and canopy conductance of citrus orchards, Agr. Water Manage., 96, 565–573, https://doi.org/10.1016/j.agwat.2008.09.016, 2009.
Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J., Zhang, Y., Ma, Y., and Song, L.: Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale, J. Geophys. Res.-Atmos., 123, 8674–8690, https://doi.org/10.1029/2018JD028447, 2018.
Zhang, J., Guan, K., Peng, B., Jiang, C., Zhou, W., Yang, Y., Pan, M., Franz, T., Heeren, D., Rudnick, D., Abimbola, O., Kimm, H., Caylor, K., Good, S., Khanna, M., Gates, J., and Cai, Y.: Challenges and opportunities in precision irrigation decision-support systems for center pivots, Environ. Res. Lett., 16, 053003, https://doi.org/10.1088/1748-9326/abe436, 2021.
Zhang, L. and Lemeur, R.: Evaluation of daily evapotranspiration estimates from instantaneous measurements, Agr. Forest Meteorol., 74, 139–154, https://doi.org/10.1016/0168-1923(94)02181-I, 1995.
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural...