Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2579-2024
https://doi.org/10.5194/hess-28-2579-2024
Research article
 | 
18 Jun 2024
Research article |  | 18 Jun 2024

Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France

Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot

Related authors

The role of antecedent conditions in translating precipitation events into extreme floods at catchment scale and in a large basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-909,https://doi.org/10.5194/egusphere-2024-909, 2024
Short summary
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024,https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023,https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023,https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024,https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Global total precipitable water variations and trends over the period 1958–2021
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024,https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024,https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024,https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Potential for historically unprecedented Australian droughts from natural variability and climate change
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024,https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary

Cited articles

AERIS portal: SERVAL and COMEPHORE, ​​​​​​​https://radarsmf.aeris-data.fr/, last access: 21 December 2023. a
Avanzi, F., Ercolani, G., Gabellani, S., Cremonese, E., Pogliotti, P., Filippa, G., Morra di Cella, U., Ratto, S., Stevenin, H., Cauduro, M., and Juglair, S.: Learning about precipitation lapse rates from snow course data improves water balance modeling, Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, 2021. a, b, c, d
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006. a
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, O., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. a, b, c, d
Barrows, H. K.: Precipitation and runoff and altitude relations for connecticut River, Eos T. Am. Geophys. Un., 14, 396–406, https://doi.org/10.1029/TR014i001p00396, 933. a
Download
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.