Articles | Volume 28, issue 9
https://doi.org/10.5194/hess-28-1957-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1957-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Linda E. Merrin
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Patrick J. Mitchell
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Anthony P. O'Grady
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Kate L. Holland
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Richard E. Mount
formerly at: Bureau of Meteorology, Canberra, Australia
David A. Post
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Chris R. Pavey
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Ashley D. Sparrow
Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
Arthur Rylah Institute for Environmental Research, Melbourne, Australia
Related authors
No articles found.
Neal Hughes, Donald Gaydon, Mihir Gupta, Andrew Schepen, Peter Tan, Geoffrey Brent, Andrew Turner, Sean Bellew, Wei Ying Soh, Christopher Sharman, Peter Taylor, John Carter, Dorine Bruget, Zvi Hochman, Ross Searle, Yong Song, Patrick Mitchell, Yacob Beletse, Dean Holzworth, Laura Guillory, Connor Brodie, Jonathon McComb, and Ramneek Singh
Nat. Hazards Earth Syst. Sci., 25, 3461–3482, https://doi.org/10.5194/nhess-25-3461-2025, https://doi.org/10.5194/nhess-25-3461-2025, 2025
Short summary
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock and farm profits rather than on traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare for and respond to financial and social impacts during droughts.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Cited articles
Abella, S. R., Shelburne, V. B., and MacDonald, N. W.: Multifactor classification of forest landscape ecosystems of Jocassee Gorges, southern Appalachian Mountains, South Carolina, Can. J. Forest Res., 33, 1933–1946, https://doi.org/10.1139/x03-116, 2003.
Addicott, E., Neldner, V. J., and Ryan, T.: Aligning quantitative vegetation classification and landscape scale mapping: updating the classification approach of the Regional Ecosystem classification system used in Queensland, Aust. J. Bot., 69, 400–413, https://doi.org/10.1071/BT20108, 2021.
Aquatic Ecosystems Task Group: Aquatic Ecosystems Toolkit, Module 1: Aquatic Ecosystems Toolkit Guidance Paper, Australian Government Department of Sustainability, Environment, Water, Population and Communities, Canberra, https://www.awe.gov.au/water/publications/aquatic-ecosystems-toolkit-module-1-guidance-paper (last access: 2 May 2023), 2012.
Australian Bureau of Agricultural and Resource Economics and Sciences: Catchment Scale Land Use of Australia – 2014, Bioregional Assessment Source Dataset [data set], https://data.gov.au/data/dataset/f85d40da-12d7-40c1-a2e3-6cc533f7acb1 (last access: 2 May 2024), 2014.
Australian Government: Bioregional Assessment Program, https://data.gov.au/organisations/org-dga-69f37b4c-bdf0-4c85-bd56-82fa6d6b087a (last access: 3 May 2024), 2024a.
Australian Government: Data.gov.au, https://data.gov.au (last access: 3 May 2024), 2024b.
Bioregional Assessment Programme: National Groundwater Dependent Ecosystems (GDE) Atlas, Bioregional Assessment Derived Dataset [data set], https://data.gov.au/data/dataset/e0733f5e-8f64-480d-aed1-1bd498967c3c/resource/c0d00dd7-0806-4fd8-8e76-47af6e3b584c/download/e358e0c8-7b83-4179-b321-3b4b70df857d.zip (last access: 2 May 2024), 2012.
Bioregional Assessment Programme: Asset database for the Maranoa-Balonne-Condamine subregion on 05 February 2016 Public, Bioregional Assessment Dataset [data set], https://data.gov.au/data/dataset/b25a0dbd-5cb8-4156-8e88-926dcaf147a2/resource/61d4b8d8-dd88-4b25-9952-c6a6550bc64e/download/b678d3ec-480e-45fd-a17c-9058b9ddd89c.zip (last access: 2 May 2024), 2015.
Bioregional Assessment Programme: Asset database for the Namoi subregion on 18 February 2016, Bioregional Assessment Derived Dataset [data set], https://data.gov.au/data/dataset/198ad685-0e34-4111-8a7d-7b4e5850c843/resource/5944005a-8cef-477a-b010-4c936c002d66/download/3134fa6b-f876-46dd-b26b-88d46d424185.zip (last access: 2 May 2024), 2016.
Bioregional Assessment Programme: Landscape classification of the Namoi preliminary assessment extent Bioregional Assessment Derived Dataset [data set], https://data.gov.au/data/dataset/198ad685-0e34-4111-8a7d-7b4e5850c843/resource/5944005a-8cef-477a-b010-4c936c002d66/download/3134fa6b-f876-46dd-b26b-88d46d424185.zip (last access: 2 May 2024), 2017.
Bioregional Assessments: Bioregional Assessment Programme, https://www.bioregionalassessments.gov.au/bioregional-assessment-program (last access: 26 August 2019), 2018.
Bioregional Assessments: Geological and Bioregional Assessment Program, https://www.bioregionalassessments.gov.au/geological-and-bioregional-assessment-program (last access: 26 August 2019), 2019.
Bioregional Assessments: Metadata and datasets of the Program, https://www.bioregionalassessments.gov.au/metadata-and-datasets-program (last access: 3 May 2024), 2024.
Brown, S. C., Lester, R. E., Versace, V. L., Fawcett, J., and Laurenson, L.: Hydrologic Landscape Regionalisation Using Deductive Classification and Random Forests, Plos One, 9, e112856, https://doi.org/10.1371/journal.pone.0112856, 2014.
Bureau of Meteorology: Australian Hydrological Geospatial Fabric (`Geofabric'), version 2.1.1, Canberra, http://www.bom.gov.au/water/geofabric/documents/v2_1/ahgf_dps_surface_cartography_V2_1_release.pdf (last access: 2 May 2024), 2012.
Carlier, J., Doyle, M., Finn, J. A., Ó hUallacháin, D., and Moran, J.: A landscape classification map of Ireland and its potential use in national land use monitoring, J. Environ. Manage., 289, 112498, https://doi.org/10.1016/j.jenvman.2021.112498, 2021.
CSIRO: Multi-resolution Valley Bottom Flatness MrVBF at three second resolution CSIRO 20000211, CSIRO [data set], https://data.gov.au/data/dataset/000da57f-422d-4e93-970e-0e2072a3ec21/resource/88e26355-6d82-4772-85a2-ed86639ee912/download/7dfc93bb-62f3-40a1-8d39-0c0f27a83cb3.zip (last access: 2 May 2024), 2000.
Cullum, C., Brierley, G., Perry, G., and Witkowski, E.: Landscape archetypes for ecological classification and mapping: The virtue of vagueness, Prog. Phys. Geogr., 41, 95–123, https://doi.org/10.1177/0309133316671103, 2016a.
Cullum, C., Rogers, K. H., Brierley, G., and Witkowski, E. T. F.: Ecological classification and mapping for landscape management and science, Prog. Phys. Geogr., 40, 38–65, https://doi.org/10.1177/0309133315611573, 2016b.
Department of Agriculture, Water and the Environment: National Vegetation Information System (NVIS), https://www.awe.gov.au/agriculture-land/land/native-vegetation/national-vegetation-information-system (last access: 22 March 2022), 2021.
Department of Sustainability, Environment, Water, Population and Communities: Murray-Darling Basin aquatic ecosystem classification, Department of Sustainability, Environment, Water, Population and Communities [data set], https://data.gov.au/data/dataset/e36d0635-69ba-485b-b8d6-498363223af6/resource/24cceb07-a971-4019-9d1a-1ebab7592406/download/a854a25c-8820-455c-9462-8bd39ca8b9d6.zip (last access: 2 May 2024), 2014.
Doody, T. M., Barron, O. V., Dowsley, K., Emelyanoya, I., Fawcett, J., Oyerton, I. C., Pritchard, J. L., Van Dijkf, A. I. J. M., and Warren, G.: Continental mapping of groundwater dependent ecosystems: A methodological framework to integrate diverse data and expert opinion, J. Hydrol.-Reg. Stud., 10, 61–81, https://doi.org/10.1016/j.ejrh.2017.01.003, 2017.
Eigenbrot, F.: Redefining Landscape Structure for Ecosystem Services, Curr. Landsc. Ecol. Rep., 1, 80–86, https://doi.org/10.1007/s40823-016-0010-0, 2016.
Elmore, A. J., Mustard, J. F., and Manning, S. J.: Regional patterns of plant community response to changes in water: Owens Valley, California, Ecol. Appl., 13, 443–460, https://doi.org/10.1890/1051-0761(2003)013[0443:RPOPCR]2.0.CO;2, 2003.
Evans, T., Tan, K., Magee, J., Karim, F., Sparrow, A., Lewis, S., Marshall, S., Kellett, J., and Galinec, V.: Context statement for the Galilee subregion. Product 1.1 from the Lake Eyre Basin Bioregional Assessment, Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, https://www.bioregionalassessments.gov.au/sites/default/files/ba-leb-gal-contextstatement-20140530_0.pdf (last access: 2 May 2024), 2014.
Fensham, R., Silcock, J., Laffineur, B., and MacDermott, H.: Lake Eyre Basin Springs Assessment Project: hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin springs and Tertiary springs of western Queensland, Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane, https://publications.qld.gov.au/dataset/11c1af89-93b9-497a-b99f-2ec6c7a8d339/resource/c5d1813b-73a4-4e05-aa86-39a8ed3045fb/download/lebsa-hchb-report-springs-wst-qld.pdf (last access: 2 May 2024), 2016.
Geoscience Australia: GEODATA TOPO 250K Series 3, Geoscience Australia [data set], https://data.gov.au/data/dataset/c5c2d224-aa95-4b6b-9e0c-bd9f25301ffc/resource/a3ca4bbb-b32a-4a47-a1a2-20155e60ebc7/download/a0650f18-518a-4b99-a553-44f82f28bb5f.zip (last access: 2 May 2024), 2006.
Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H. G.: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrol. Earth Syst. Sci., 15, 3275–3291, https://doi.org/10.5194/hess-15-3275-2011, 2011.
Gleeson, T. and Paszkowski, D.: Perceptions of scale in hydrology: what do you mean by regional scale?, Hydrolog. Sci. J., 59, 99–107, https://doi.org/10.1080/02626667.2013.797581, 2014.
Hall, J., Storey, D., Piper, V., Bolton, E., Woodford, A., and Jolly, J.: Ecohydrological conceptualisation for the eastern Pilbara region. A report prepared for BHP Billiton Iron Ore, Subiaco, https://www.bhp.com/-/media/bhp/regulatory-information-media/iron-ore/western-australia-iron-ore/0000/report-appendices/160316_ironore_waio_pilbarastrategicassessment_state_appendix7_appendixd.pdf (last access: 2 May 2024), 2015.
Hawkins, C. P. and Norris, R. H.: Performance of different landscape classifications for aquatic bioassessments: introduction to the series, J. N. Am. Benthol. Soc., 19, 367–369, 2000.
Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., and Stevenson, R. J.: Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations, J. N. Am. Benthol. Soc., 19, 541–556, https://doi.org/10.2307/1468113, 2000.
Herr, A., Dambacher, J. M., Pinkard, E., Glen, M., Mohammed, C., and Wardlaw, T.: The uncertain impact of climate change on forest ecosystems How qualitative modelling can guide future research for quantitative model development, Environ. Model. Softw., 76, 95–107, https://doi.org/10.1016/j.envsoft.2015.10.023, 2016.
Herr, A., Brandon, C., Beringen, H., Merrin, L. E., Post, D. A., Mitchell, P. J., Crosbie, R., Aryal, S. K., Janarhanan, S., Schmidt, R. K., and Henderson, B. L.: Assessing impacts of coal resource development on water resources in the Namoi subregion: key findings, Product 5: Outcome synthesis for the Namoi subregion from the Northern Inland Catchments Bioregional Assessment, https://www.bioregionalassessments.gov.au/sites/default/files/16-00764_lw_basynthesisreport_nam_500pr_web_180626-v02.pdf (last access: 2 May 2024), 2018a.
Herr, A., Aryal, S. K., Brandon, C., Crawford, D., Crosbie, R., Davies, P., Dunne, R., Gonzalez, D., Hayes, K. R., Henderson, B. L., Hosack, G., Ickowicz, A., Janarhanan, S., Marvanek, S., Mitchell, P. J., Merrin, L. E., Herron, N. F., O'Grady, A. P., and Post, D. A.: Impact and risk analysis for the Namoi subregion, Product 3–4 for the Namoi subregion from the Northern Inland Catchments Bioregional Assessment, https://www.bioregionalassessments.gov.au/sites/default/files/ba-nic-nam-3-4-combineddocumenta_20180628-v4_0.pdf (last access: 2 May 2024), 2018b.
Hobbs, R. J. and McIntyre, S.: Categorizing Australian landscapes as an aid to assessing the generality of landscape management guidelines, Global Ecol. Biogeogr., 14, 1–15, https://doi.org/10.1111/j.1466-822X.2004.00130.x, 2005.
Holland, K., Beringen, H., Brandon, C., Crosbie, R., Davies, P., Gonzalez, D., Henderson, B., Janardhanan, S., Lewis, S., Merrin, L., Mitchell, P., Mount, R., O'Grady, A., Peeters, L., Post, D., Schmidt, R., Sudholz, C., and Turnadge, C.: Impact and risk analysis for the Maranoa-Balonne-Condamine subregion, Product 3–4 for the Maranoa-Balonne-Condamine subregion from the Northern Inland Catchments Bioregional Assessment, Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, https://www.bioregionalassessments.gov.au/sites/default/files/ba-nic-mbc-30-40-impactrisk-20170731_0.pdf (last access: 2 May 2024), 2017.
Hosack, G., Ickowicz, A., Hayes, K. R., Dambacher, J. M., Barry, S. A., and Henderson, B. L.: Receptor impact modelling, Submethodology M08 from the Bioregional Assessment Technical Programme, https://www.bioregionalassessments.gov.au/sites/default/files/ba-m08-receptorimpactmodelling-20180427a.pdf (last access: 2 May 2024), 2018.
Hosack, G. R., Hayes, K. R., and Barry, S. C.: Prior elicitation for Bayesian generalised linear models with application to risk control option assessment, Reliab. Eng. Syst. Safe., 167, 351–361, https://doi.org/10.1016/j.ress.2017.06.011, 2017.
Ickowicz, A., Hosack, G., Mitchell, P. J., Dambacher, J. M., Hayes, K. R., O'Grady, A. P., Henderson, B. L., and Herron, N. F.: Receptor impact modelling for the Namoi subregion, Product 2.7 for the Namoi subregion from the Northern Inland Catchments Bioregional Assessment, https://www.bioregionalassessments.gov.au/sites/default/files/ba-nic-nam-2.7-receptormodelling-20180628.pdf (last access: 2 May 2024), 2018.
Jones, C. E. J., Leibowitz, S. G., Sawicz, K. A., Comeleo, R. L., Stratton, L. E., Morefield, P. E., and Weaver, C. P.: Using hydrologic landscape classification and climatic time series to assess hydrologic vulnerability of the western U.S. to climate, Hydrol. Earth Syst. Sci., 25, 3179–3206, https://doi.org/10.5194/hess-25-3179-2021, 2021.
Kilroy, G., Ryan, J., Coxon, C., and Daly, D.: A Framework for the Assessment of Groundwater – Dependent Terrestrial Ecosystems under the Water Framework Directive, Associated datasets and digitial information objects connected to this resource are available at: Secure Archive For Environmental Research Data (SAFER) managed by Environmental Protection Agency Ireland, https://eparesearch.epa.ie/safer/resource?id=b5799c70-224b-102c-b381-901ddd016b14 (last access: 1 May 2024), 2008.
Leathwick, J. R., Overton, J. M., and McLeod, M.: An Environmental Domain Classification of New Zealand and Its Use as a Tool for Biodiversity Management, Conserv. Biol., 17, 1612–1623, https://doi.org/10.1111/j.1523-1739.2003.00469.x, 2003.
Leibowitz, S. G., Comeleo, R. L., Wigington Jr., P. J., Weaver, C. P., Morefield, P. E., Sproles, E. A., and Ebersole, J. L.: Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA, Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014, 2014.
Lewis, S., Evans, T., Pavey, C., Holland, K., Henderson, B., Kilgour, P., Dehelean, A., Karim, F., Viney, N., Post, D., Schmidt, R., Sudholz, C., Brandon, C., Zhang, Y., Lymburner, L., Dunn, B., Mount, R., Gonzalez, D., Peeters, L., O'Grady, A., Dunne, R., Ickowicz, A., Hosack, G., Hayes, K., Dambacher, J., and Barry, S.: Impact and risk analysis for the Galilee subregion, Product 3–4 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment, Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, https://www.bioregionalassessments.gov.au/assessments/3-4-impact-and-risk-analysis-galilee-subregion (last access: 2 May 2024), 2018.
Liermann, C. A. R., Olden, J. D., Beechie, T. J., Kennard, M. J., Skidmore, P. B., Konrad, C. P., and Imaki, H.: Hydrogeomorphic Classification of Washington State Rivers to Support Emerging Environmental Flow Management Strategies, River Res. Appl., 28, 1340–1358, https://doi.org/10.1002/rra.1541, 2012.
MacMillan, R., Martin, T., Earle, T., and McNabb, D.: Automated analysis and classification of landforms using high-resolution digital elevation data: applications and issues, Can. J. Remote Sens., 29, 592–606, https://doi.org/10.5589/m03-031, 2003.
McMahon, G., Gregonis, S. M., Waltman, S. W., Omernik, J. M., Thorson, T. D., Freeouf, J. A., Rorick, A. H., and Keys, J. E.: Developing a spatial framework of common ecological regions for the conterminous United States, Environ. Manage., 28, 293–316, https://doi.org/10.1007/s0026702429 2001.
NSW Office of Environment and Heritage: Namoi Valley Flood Plain Atlas 1979, Bioregional Assessment Source Dataset [dataset], https://data.gov.au/data/dataset/e36d0635-69ba-485b-b8d6-498363223af6/resource/24cceb07-a971-4019-9d1a-1ebab7592406/download/a854a25c-8820-455c-9462-8bd39ca8b9d6.zip (last access: 2 May 2024), 1979.
NSW Office of Environment and Heritage: Border Rivers Gwydir/Namoi Regional Native Vegetation Map Version 2.0 VIS_ID_2004, NSW Office of Environment and Heritage [data set], https://data.gov.au/data/dataset/2e1f833e-d571-446a-b35a-baddec7f6234/resource/60946928-ee0f-4225-ba47-aaea74e59cb7/download/b3ca03dc-ed6e-4fdd-82ca-e9406a6ad74a.zip (last access: 2 May 2024), 2015.
NSW Office of Water: Namoi CMA Groundwater Dependent Ecosystems, NSW Office of Water [data set], https://data.gov.au/data/dataset/a3e21ec4-ae53-4222-b06c-0dc2ad9838a8 (last acces: 11 December 2018), 2015.
NVIS Technological Working Group: Australian Vegetation Attribute Manual: National Vegetation Information System, Version 7.0, Canberra, https://www.environment.gov.au/system/files/resources/292f10e2-8670-49b6-a72d-25e892a92360/files/australian-vegetation-attribute-manual-v70.pdf (last access: 2 May 2024), 2017.
Office of Groundwater Impact Assessment: Spring vents assessed for the Surat Underground Water Impact Report 2012, Office of Groundwater Impact Assessment [data set], https://data.gov.au/data/dataset/f25a2e28-be08-418f-a3c9-7e63fd0c79f2/resource/172526b4-dcd2-46f8-86a7-0eefb13ebafb/download/6d2b59fc-e312-4c89-9f10-e1f1b20a7a6d.zip (last access: 2 May 2024), 2015.
Olden, J. D., Kennard, M. J., and Pusey, B. J.: A framework for hydrologic classification with a review of methodologies and applications in ecohydrology, Ecohydrology, 5, 503–518, https://doi.org/10.1002/eco.251, 2012.
Pain, C., Gregory, L., Wilson, P., and McKenzie, N.: The physiographic regions of Australia – Explanatory notes 2011, CSIRO, Canberra, https://publications.csiro.au/rpr/download?pid=csiro:EP113843&dsid=DS4 (last access: 2 May 2024), 2011.
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., Freeman, M. C., Henriksen, J., Jacobson, R. B., Kennen, J. G., Merritt, D. M., O'Keeffe, J. H., Olden, J. D., Rogers, K., Tharme, R. E., and Warner, A.: The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards, Freshwater Biol., 55, 147–170, https://doi.org/10.1111/j.1365-2427.2009.02204.x, 2010.
Post, D. A., Crosbie, R. S., Viney, N. R., Peeters, L. J., Zhang, Y., Herron, N. F., Janardhanan, S., Wilkins, A., Karim, F., Aryal, S. K., Pena-Arancibia, J., Lewis, S., Evans, T., Vaze, J., Chiew, F. H. S., Marvanek, S., Henderson, B. L., Schmidt, B., and Herr, A.: Impacts of coal resource development in eastern Australia on groundwater and surface water, J. Hydrol., 591, 125281, https://doi.org/10.1016/j.jhydrol.2020.125281, 2020.
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.: Plant functional type mapping for earth system models, Geosci. Model Dev., 4, 993–1010, https://doi.org/10.5194/gmd-4-993-2011, 2011.
Pyne, M. I., Carlisle, D. M., Konrad, C. P., and Stein, E. D.: Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration, Ecohydrology, 10, e1802, https://doi.org/10.1002/eco.1802, 2017.
Queensland Department of Science, Information Technology, Innovation and the Arts: Queensland wetland data version 3 – wetland areas, Queensland Department of Science, Information Technology, Innovation and the Arts [data set], https://data.gov.au/data/dataset/a744f57e-555b-4d3f-b392-629799b3154f/resource/7a705b0f-528d-44b4-9b6b-9e9ff7012f7d/download/2a187a00-b01e-4097-9ca4-c9683e7f4786.zip (last access: 2 May 2024), 2012.
Queensland Department of Science, Information Technology, Innovation and the Arts: Queensland groundwater dependent ecosystems, Queensland Department of Science, Information Technology, Innovation and the Arts [data set], https://data.gov.au/data/dataset/56f445c1-ff5a-45dc-8b54-0ff05e855492/resource/14fcaa4b-4f63-4670-ad5f-f3f4ba79065f/download/10940dfa-d7ef-44fb-8ac2-15d75068fff8.zip (last access: 2 May 2024), 2013.
Queensland Government, Queensland: Groundwater dependent ecosystem mapping background, https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/gde-background/ (last access: 9 September 2021), 2016.
Queensland Herbarium: Regional Ecosystem Description Databas (REDD), Version 12 (March 2021), Brisbane, https://www.qld.gov.au/environment/plants-animals/plants/ecosystems (last access: 2 May 2021), 2021.
Queensland Herbarium, Department of Science, Information Technology, Innovation and the Arts: Queensland Groundwater Dependent Ecosystems and Shallowest Watertable Aquifer 20150714, Queensland Herbarium, Department of Science, Information Technology, Innovation and the Arts [data set], https://data.gov.au/data/dataset/d2428776-3525-4e72-9d23-c44edcc9f564/resource/3db41191-791c-45f0-a382-ad59ad21e42f/download/3d36e3d4-b16b-43b3-b2eb-c1aea7ef9193.zip (last access: 2 May 2024), 2015.
Ryberg, T., Davidsen, J., Bernhard, J., and Larsen, M. C.: Ecotones: a Conceptual Contribution to Postdigital Thinking, Postdigi. Sci. Educ., 3, 407–424, https://doi.org/10.1007/s42438-020-00213-5, 2021.
SA Department for Water: South Australian Wetlands – Groundwater Dependent Ecosystems (GDE) Classification, SA Department for Water [data set], https://data.gov.au/data/dataset/586c63ee-5fb8-49ff-b173-bad7eb3a257b/resource/43ad68b9-12ed-4a32-8d22-efffa56a6884/download/fc35d75a-f12e-494b-a7d3-0f27e7159b05.zip (last access: 2 May 2024), 2010.
Sattler, P. S. and Williams, R. D.: The conservation status of Queensland's bioregional ecosystems, Enivronmental Protection Agency, Brisbane, Environmental Protection Agency, 100 pp., ISBN 0734510209, ISBN 9780734510204, 1999.
Sawicz, K. A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., and Carrillo, G.: Characterizing hydrologic change through catchment classification, Hydrol. Earth Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, 2014.
Snelder, T. H., Cattanéo, F., Suren, A. M., and Biggs, B. J.: Is the River Environment Classification an improved landscape-scale classification of rivers?, J. N. Am. Benthol. Soc., 23, 580–598, https://doi.org/10.1899/0887-3593(2004)023<0580:ITRECA>2.0.CO;2, 2004.
Thackway, R. and Cresswell, I. D.: An Interim Biogeographic Regionalisation for Australia: A framework for setting priorities in the national reserves system cooperative program, Australian Nature Conservancy Agency, Canberra, https://www.environment.gov.au/system/files/resources/4263c26f-f2a7-4a07-9a29-b1a81ac85acc/files/ibra-framework-setting-priorities-nrs-cooperative-program.pdf (last access: 2 May 2024), 1995.
Ward, J. V., Tockner, K., and Schiemer, F.: Biodiversity of floodplain river ecosystems: ecotones and connectivity1, Regul. Rivers: Res. Manage., 15, 125–139, https://doi.org/10.1002/(sici)1099-1646(199901/06)15:1/3<125::Aid-rrr523>3.0.Co;2-e, 1999.
Welsh, W., Hodgkinson, J., Strand, J., Northey, J., Aryal, S., O'Grady, A., Slatter, E., Herron, N., Pinetown, K., Carey, H., Yates, G., Raisbeck-Brown, N., and Lewis, S.: Context statement for the Cooper subregion, Product 1.1 for the Namoi subregion from the Northern Inland Catchments Bioregional Assessment. Department of the Environment, Bureau of Meteorology, Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, https://www.bioregionalassessments.gov.au/sites/default/files/ba-nic-nam-110-contextstatement-20140603.pdf (last access: 2 May 2023), 2014.
Welsh, W., Herron, N., Rohead-O'Brien, H., Ransley, T., Aryal, S., Mitchell, P., Buckerfield, S., and Marshall, S.: Context statement for the Maranoa–Balonne–Condamine subregion, Product 1.1 for the Maranoa–Balonne–Condamine from the Northern Inland Catchments Bioregional Assessment, Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia, https://www.bioregionalassessments.gov.au/sites/default/files/ba-nic-mbc-110-contextstatement-20140721.pdf (last access: 2 May 2024), 2015.
Wiens, J. A. and Milne, B. T.: Scaling of `landscapes' in landscape ecology, or, landscape ecology from a beetle's perspective, Landsc. Ecol., 3, 87–96, https://doi.org/10.1007/BF00131172, 1989.
Wolfe, J. D., Shook, K. R., Spence, C., and Whitfield, C. J.: A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada, Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, 2019.
Zhang, Z., Zang, R., Wang, G., and Huang, X.: Classification of Landscape Types Based on Land Cover, Successional Stages and Plant Functional Groups in a Species-Rich Forest in Hainan Island, China, Trop. Conserv. Sci., 9, 135–152, https://doi.org/10.1177/194008291600900107, 2016.
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
We develop an ecohydrological classification for regions with limited hydrological records. It...