State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519085, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining, China
Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
Shaojie Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Yujun Ma
School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
Junqi Wei
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Qiwen Liao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing...