Articles | Volume 28, issue 7
https://doi.org/10.5194/hess-28-1585-2024
https://doi.org/10.5194/hess-28-1585-2024
Research article
 | 
09 Apr 2024
Research article |  | 09 Apr 2024

Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis

Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024,https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
A comprehensive study of deep learning for soil moisture prediction
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024,https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023,https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary
Predicting soil hydraulic properties for binary mixtures – concept and application for constructed Technosols
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023,https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Application of an improved distributed hydrological model based on the soil–gravel structure in the Niyang River basin, Qinghai–Tibet Plateau
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci., 27, 2681–2701, https://doi.org/10.5194/hess-27-2681-2023,https://doi.org/10.5194/hess-27-2681-2023, 2023
Short summary

Cited articles

Abu Hamed, T., Bayraktar, E., Mehmetoglu, Ü., and Mehmetoglu, T.: The biodegradation of benzene, toluene and phenol in a two-phase system, Biochem. Eng. J., 19, 137–146, https://doi.org/10.1016/j.bej.2003.12.008, 2004. 
Akbariyeh, S., Bartelt-Hunt, S., Snow, D., Li, X., Tang, Z., and Li, Y.: Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux, J. Contam. Hydrol., 211, 15–25, https://doi.org/10.1016/j.jconhyd.2018.02.005, 2018. 
Alvarez, P. J. J., Anid, P. J., and Vogel, T. M.: Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material, Biodegradation, 2, 43–51, https://doi.org/10.1007/BF00122424, 1991. 
Archer, G. E. B., Saltelli, A., and Sobol, I. M.: Sensitivity measures ANOVA-like techniques and the use of bootstrap, J. Stat. Comput. Sim., 58, 99–120, https://doi.org/10.1080/00949659708811825, 1997. 
Baek, D. S., Kim, S. B., and Kim, D. J.: Irreversible sorption of benzene in sandy aquifer materials, Hydrol. Process., 17, 1239–1251, https://doi.org/10.1002/hyp.1181, 2003. 
Download
Short summary
Contamination from fuel constituents poses a major threat to groundwater. However, studies devoted to identification of the driving parameters for fuel derivative transport in soils are scarce, and none have dealt with heterogeneous layered media. Here, we performed global sensitivity analysis (GSA) on a model of benzene transport to groundwater. The results identified the parameters controlling benzene transport in soils and showed that GSA is as an important tool for transport model analysis.