Articles | Volume 28, issue 5
https://doi.org/10.5194/hess-28-1147-2024
https://doi.org/10.5194/hess-28-1147-2024
Research article
 | 
07 Mar 2024
Research article |  | 07 Mar 2024

A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin

Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour

Related authors

P-LSHv2: a multi-decadal global daily evapotranspiration dataset enhanced with explicit soil moisture constraints
Jin Feng, Ke Zhang, Lijun Chao, Huijie Zhan, and Yunping Li
Earth Syst. Sci. Data, 17, 5039–5064, https://doi.org/10.5194/essd-17-5039-2025,https://doi.org/10.5194/essd-17-5039-2025, 2025
Short summary
Global escalation of more frequent and intense compound heatwave-extreme precipitation events
Haoyu Jin, Ke Zhang, Moyang Liu, Xuan Yu, Xu Yang, Lijun Chao, Pengfei Zhang, and Guoyan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4289,https://doi.org/10.5194/egusphere-2025-4289, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Predicting snow cover and frozen ground impacts on large basin runoff: developing appropriate model complexity
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025,https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
Altitudinal variation in impacts of snow cover, reservoirs and precipitation seasonality on monthly runoff in Tibetan Plateau catchments
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-401,https://doi.org/10.5194/hess-2024-401, 2025
Revised manuscript accepted for HESS
Short summary
Integrated Catchment Classification Across China Based on Hydroclimatological and Geomorphological Similarities Using Self-Organizing Maps and Fuzzy C-Means Clustering for Hydrological Modeling
Jiefan Niu, Ke Zhang, Xi Li, and Hongjun Bao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-304,https://doi.org/10.5194/hess-2024-304, 2024
Preprint under review for HESS
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insurance, 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 
Abdalla, E. M. H., Pons, V., Stovin, V., De-Ville, S., Fassman-Beck, E., Alfredsen, K., and Muthanna, T. M.: Evaluating different machine learning methods to simulate runoff from extensive green roofs, Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021, 2021. 
Abdallah, M.: A D-vine copula-based quantile regression towards merging satellite precipitation products over a rugged topography: A case study at the upper Tekeze Atbara Basin of the Nile Basin, HydroShare [data set], http://www.hydroshare.org/resource/d0d9140845144d73ac578d865411a10a (last access: 25 February 2024), 2024. 
Abdallah, M., Mohammadi, B., Zaroug, M. A. H., Omer, A., Cheraghalizadeh, M., Eldow, M. E. E., and Duan, Z.: Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models, J. Hydrol.: Reg. Stud., 44, 101259, https://doi.org/10.1016/j.ejrh.2022.101259, 2022. 
Download
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Share