Articles | Volume 28, issue 4
https://doi.org/10.5194/hess-28-1027-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1027-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution automated detection of headwater streambeds for large watersheds
Francis Lessard
CORRESPONDING AUTHOR
Department of Wood and Forest Science, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
Centre d'étude de la forêt, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
CentrEau - Quebec Water Management Research Centre, Université Laval, 1065 avenue de la Médecine, G1V 0A6, Québec, QC, Canada
Naïm Perreault
Department of Wood and Forest Science, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
Centre d'étude de la forêt, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
Sylvain Jutras
Department of Wood and Forest Science, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
Centre d'étude de la forêt, Université Laval, 2405 rue de la Terrasse, G1V 0A6, Québec, QC, Canada
CentrEau - Quebec Water Management Research Centre, Université Laval, 1065 avenue de la Médecine, G1V 0A6, Québec, QC, Canada
Related authors
No articles found.
Maxime Beaudoin-Galaise and Sylvain Jutras
The Cryosphere, 16, 3199–3214, https://doi.org/10.5194/tc-16-3199-2022, https://doi.org/10.5194/tc-16-3199-2022, 2022
Short summary
Short summary
Our study presents an analysis of the uncertainty and measurement error of manual measurement methods of the snow water equivalent (SWE). Snow pit and snow sampler measurements were taken during five consecutive winters. Our results show that, although the snow pit is considered a SWE reference in the literature, it is a method with higher uncertainty and measurement error than large diameter samplers, considered according to our results as the most appropriate reference in a boreal biome.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Cited articles
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R. B.: The role of headwater streams in downstream water quality, J. Am. Water Resour. As., 43, 41–59, https://doi.org/10.1111/j.1752-1688.2007.00005.x, 2007.
Band, L. E.: Topographic Partition of Watersheds with Digital Elevation Models, Water Resour. Res., 22, 15–24, https://doi.org/10.1029/WR022i001p00015, 1986.
Blouin, J. and Berger, J.-P.: Guide de reconnaissance des types écologiques de la région écologique 5a – Plaine de l'Abitibi, Ministère des Ressources naturelles du Québec, Forêt Québec, Direction des inventaires forestiers, Division de la classification écologique et productivité des stations, 180 pp., ISBN 2-551-21578-1, 2002.
Blouin, J. and Berger, J.-P.: Guide de reconnaissance des types écologiques des régions écologiques 5e – Massif du lac Jacques-Cartier et 5f – Massif du mont Valin, Ministère des Ressources naturelles, de la Faune et des Parcs, Forêt Québec, Direction des inventaires forestiers, Division de la classification écologique et productivité des stations, 194 pp., ISBN 2-551-22455-1, 2004.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification And Regression Trees, Routledge, https://doi.org/10.1201/9781315139470, 1984.
Cho, H. C., Clint Slatton, K., Cheung, S., and Hwang, S.: Stream detection for LiDAR digital elevation models from a forested area, Int. J. Remote Sens., 32, 4695–4721, https://doi.org/10.1080/01431161.2010.484822, 2011.
Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol. Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Couture, T.: Fish biodiversity and morphological quality in small agricultural streams of Montérégie, Québec, Master thesis, Department of Geography, Planning and Environment, Concordia University, 75 pp., https://spectrum.library.concordia.ca/id/eprint/992191/ (last access: 26 February 2024), 2023.
Creed, I. F., Lane, C. R., Serran, J. N., Alexander, L. C., Basu, N. B., Calhoun, A. J. K., Christensen, J. R., Cohen, M. J., Craft, C., D'Amico, E., De Keyser, E., Fowler, L., Golden, H. E., Jawitz, J. W., Kalla, P., Katherine Kirkman, L., Lang, M. W., Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin, D. L., Raanan-Kiperwas H., Rains M. C., Rains K. C., and Smith, L.: Enhancing protection for vulnerable waters, Nat. Geosci., 10, 809–815, https://doi.org/10.1038/NGEO3041, 2017.
Dietrich, W. E. and Dunne, T.: Sediment budget for a small catchment in mountainous terrain, Z. Geomorph. N. F., Suppl. Bd., 29, 191–206., 1978.
Dietrich, W. E. and Dunne, T.: The Channel head, in: Channel Network Hydrology, edited by: Beven K. and Kirkby M. J., Wiley, New York, 175–219, 1993.
Direction de l'expertise en biodiversité: Guide d'utilisation du Cadre écologique de référence du Québec (CERQ), Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), Québec, 24 pp., 2018.
Drolet, E.: Identification des zones de contrainte de drainage aux opérations forestières à l'aide des données lidar, Master thesis, Department of Wood and Forest Science, Université Laval, 62 pp., https://corpus.ulaval.ca/entities/publication/4ae09f16-ad73-4e53-8fd4-6cb1d347807e (last access: 26 February 2024), 2020.
Dunne, T. and Black, R. D.: An Experimental Investigation Runoff Production in Permeable Soils, Water Resour. Res., 6, 478–490, https://doi.org/10.1029/WR006i002p00478, 1970.
Elmore, A. J., Julian, J. P., Guinn, S. M., and Fitzpatrick, M. C.: Potential Stream Density in Mid-Atlantic U. S. Watersheds, PLoS ONE, 8, e74819, https://doi.org/10.1371/journal.pone.0074819, 2013.
Estrada, D.: Smart Device/GNSS Receiver Assessment Study for Hydrographic, Office of the State Engineer Information Technology Services Bureau GIS (OSE GIS), 48 pp., https://www.academia.edu/32834817/GNSS_Accuracy_Assessment_Trimble_R1_and_EOS_Arrow (last access: 26 February 2024), 2017.
Fairfield, J. and Leymarie, P.: Drainage Networks From Grid Digital Elevation Models, Water Resour. Res., 27, 709–717, https://doi.org/10.1029/90WR02658, 1991.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Freeman, M. C., Pringle, C. M., and Jackson, C. R.: Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales, J. Am. Water Resour. As., 43, 5–14, https://doi.org/10.1111/j.1752-1688.2007.00002.x, 2007.
Freeman, T. G.: Calculating catchment area with divergent flow based on a regular grid, Comput. Geosci., 17, 413–422, https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Fürnkranz, J.: Pruning Algorithms for Rule Learning, Mach. Learn., 27, 139–172, https://doi.org/10.1023/A:1007329424533, 1997.
Gosselin, J.: Guide de reconnaissance des types écologiques des régions écologiques 3a – Collines de l'Outaouais et du Témiscamingue et 3b – Collines du lac Nominingue, Ministère des Ressources naturelles du Québec, Forêt Québec, Direction des inventaires forestiers, Division de la classification écologique et de la productivité des stations, 188 pp., ISBN 2-551-21616-8, 2002.
Gosselin, J.: Guide de reconnaissance des types écologiques de la région écologique 3d – Coteaux des basses Appalaches, Ministère des Ressources naturelles et de la Faune, Direction des inventaires forestiers, Division de la classification écologique et productivité des stations, 186 pp., ISBN 2-551-22453-5, 2005a.
Gosselin, J.: Guides de reconnaissance des types écologiques de la région écologique 2b – Plaine du Saint-Laurent, Ministère des Ressources naturelles et de la Faune, Direction des inventaires forestiers, Division de la classification écologique et productivité des stations, 188 pp., ISBN 2-551-22728-3, 2005b.
Goulden, T., Hopkinson, C., Jamieson, R., and Sterling, S.: Sensitivity of watershed attributes to spatial resolution and interpolation method of LiDAR DEMs in three distinct landscapes, Water Resour. Res., 50, 1908–1927, https://doi.org/10.1002/2013WR013846, 2014.
Guisan, A., Weiss, S. B., and Weiss, A. D.: GLM versus CCA spatial modeling of plant species distribution, Plant Ecol., 143, 107–122, https://doi.org/10.1023/A:1009841519580, 1999.
Hafen, K. C., Blasch, K. W., Rea, A., Sando, R. and Gessler, P. E.: The Influence of Climate Variability on the Accuracy of NHD Perennial and Nonperennial Stream Classifications, J. Am. Water Resour. As., 56, 903–916, https://doi.org/10.1111/1752-1688.12871, 2020.
Heine, R. A., Lant, C. L., and Sengupta, R. R.: Development and comparison of approaches for automated mapping of stream channel networks, Ann. Assoc. Am. Geogr., 94, 477–490, https://doi.org/10.1111/j.1467-8306.2004.00409.x, 2004.
Hengl, T., Heuvelink, G. B. M., and van Loon, E. E.: On the uncertainty of stream networks derived from elevation data: the error propagation approach, Hydrol. Earth Syst. Sci., 14, 1153–1165, https://doi.org/10.5194/hess-14-1153-2010, 2010.
Henkle, J. E., Wohl, E., and Beckman, N.: Locations of channel heads in the semiarid Colorado Front Range, USA, Geomorphology, 129, 309–319, https://doi.org/10.1016/j.geomorph.2011.02.026, 2011.
Horton, B. Y. R. E.: Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology, GSA Bulletin, 56, 275–370, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2, 1945.
James, L. A., Watson, D. G., and Hansen, W. F.: Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA, Catena, 71, 132–144, https://doi.org/10.1016/j.catena.2006.10.010, 2007.
James, L. A., Hunt, K. J., Winter, S. W., James, L. A., and Hunt, K. J.: The LiDAR-side of Headwater Streams: Mapping Channel Networks with High-resolution Topographic Data, Southeastern Geographer, 50, 523–539, https://doi.org/10.1353/sgo.2010.0009, 2010.
Jensen, C. K., McGuire, K. J., Shao, Y., and Andrew Dolloff, C.: Modeling wet headwater stream networks across multiple flow conditions in the Appalachian Highlands, Earth Surf. Proc. Land., 43, 2762–2778, https://doi.org/10.1002/esp.4431, 2018.
Jensen, C. K., McGuire, K. J., McLaughlin, D. L., and Scott, D. T.: Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors, Environ. Monit. Assess., 191, 226, https://doi.org/10.1007/s10661-019-7373-8, 2019.
Jenson, S. K. and Dominque, J. O.: Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Rem. S., 54, 1593–1600. 1988.
Julian, J. P., Elmore, A. J., and Guinn, S. M.: Channel head locations in forested watersheds across the mid-Atlantic United States: A physiographic analysis, Geomorphology, 177–178, 194–203, https://doi.org/10.1016/j.geomorph.2012.07.029, 2012.
Leboeuf, A. and Pomerleau, I.: Projet d'acquisition de données par le capteur LiDAR à l'échelle provinciale: analyse des retombées et recommandations, Ministère des Forêts, de la Faune et des Parcs, Direction des inventaires forestiers, 15 pp., ISBN 978-2-550-71657-0, 2015.
Leopold, L. B., Wolman, M. G., and Miller, J. P.: Fluvial Processes in Geomorphology, W. H. Freeman and Company, San Francisco, California, 522 pp., ISBN 0486685888, 1964.
Lessard, F.: Optimisation cartographique de l'hydrographie linéaire fine, Master thesis, Department of Wood and Forest Science, Université Laval, 89 pp., https://corpus.ulaval.ca/entities/publication/46db5d3e-50f0-4d21-a554-56f61e25b74f (last access: 26 February 2024), 2020.
Lessard, F.: FraLessard/headwater_streambeds, GitHub [data set], https://github.com/FraLessard/headwater_streambeds.git (last access: 26 February 2024), 2024.
Lessard, F., Jutras, S., Perreault, N., and Guilbert, E.: Performance of automated geoprocessing methods for culvert detection in remote forest environments, Can. Water Resour. J., 48, 248–257, https://doi.org/10.1080/07011784.2022.2160660, 2023.
Li, R., Tang, Z., Li, X., and Winter, J.: Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling, ISPRS Int. J. Geo-Inf., 2, 1136–1152, https://doi.org/10.3390/ijgi2041136, 2013.
Lindsay, J. B.: Sensitivity of channel mapping techniques to uncertainty in digital elevation data, Int. J. Geogr. Inf. Sci., 20, 669–692, https://doi.org/10.1080/13658810600661433, 2006.
Lindsay, J. B.: “ Whitebox GAT: A Case Study in Geomorphometric Analysis ”, Comput. Geosci., 95, 75–84, https://doi.org/10.1016/j.cageo.2016.07.003, 2016a.
Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models, Hydrol. Process. 30, 846–857, https://doi.org/10.1002/hyp.10648, 2016b.
Lindsay, J. B. and Dhun, K.: Modelling surface drainage patterns in altered landscapes using LiDAR, Int. J. Geogr. Inf. Sci., 29, 397–411, https://doi.org/10.1080/13658816.2014.975715, 2015.
Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S., and Leonard, N. E.: The contribution of headwater streams to biodiversity in river networks, J. Am. Water Resour. As., 43, 86–103, https://doi.org/10.1111/j.1752-1688.2007.00008.x, 2007.
MELCC – Ministère de l'Environnement et de la Lutte contre les changements climatiques: Normales climatiques du Québec 1981–2010, [data set], https://www.environnement.gouv.qc.ca/climat/normales/ (last access: 26 February 2024), 2022.
Montgomery, D. R. and Dietrich, W. E.: Channel Initiation and the Problem of Landscape Scale, Science, 255, 826–830, https://doi.org/10.1126/science.255.5046.826, 1992.
Montgomery, D. R. and Dietrich, W. E.: Landscape dissection and drainage area-slope thresholds, in: Process Models and Theoretical Geomorphology, edited by: Kirkby, M. J., John Wiley and Sons, 221–246, ISBN 0471941042, 1994.
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel Network Source Representation Using Digital Elevation Models, Water Resour. Res., 29, 3925–3934, https://doi.org/10.1029/93WR02463, 1993.
Moussa, R., Voltz, M., and Andrieux, P.: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events, Hydrol. Process., 16, 393–412, https://doi.org/10.1002/hyp.333, 2002.
Murphy, P. N. C., Ogilvie, J., Meng, F.-R. R., and Arp, P. A.: Stream network modelling using lidar and photogrammetric digital elevation models: a comparison and field verification, Hydrol. Process., 22, 1747–1754, https://doi.org/10.1002/hyp.6770, 2008.
Murphy, P. N. C., Ogilvie, J. and Arp, P. A.: Topographic modelling of soil moisture conditions: a comparison and verification of two models, Eur. J. Soil Sci., 60, 94–109, https://doi.org/10.1111/j.1365-2389.2008.01094.x, 2009.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Comput. Vision Graph., 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.
O'Neil, G. and Shortridge, A.: Quantifying local flow direction uncertainty, Int. J. Geogr. Inf. Sci., 27, 1292–1311, https://doi.org/10.1080/13658816.2012.719627, 2013.
Passalacqua, P., Belmont, P., and Foufoula-Georgiou, E.: Automatic geomorphic feature extraction from lidar in flat and engineered landscapes, Water Resour. Res., 48, 1–18, https://doi.org/10.1029/2011WR010958, 2012.
Persendt, F. C. and Gomez, C.: Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs, Geomorphology, 260, 32–50, https://doi.org/10.1016/j.geomorph.2015.06.047, 2016.
Peucker, T. K. and Douglas, D. H.: Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data, Comput. Vision Graph., 4, 375–387, https://doi.org/10.1016/0146-664x(75)90005-2, 1975.
Richardson, M. and Millard, K.: Geomorphic and Biophysical Characterization of Wetland Ecosystems with Airborne LiDAR Concepts, Methods, and a Case Study, in: High Spatial Resolution Remote Sensing, 1st Edition, CRC Press, 39 pp., ISBN 9780429470196, 2018.
Roelens, J., Rosier, I., Dondeyne, S., Van Orshoven, J., and Diels, J.: Extracting drainage networks and their connectivity using LiDAR data, Hydrol. Process., 32, 1026–1037, https://doi.org/10.1002/hyp.11472, 2018.
Sanders, K. E., Smiley Jr., P. C., Gillespie, R. B., King, K. W., Smith, D. R., and Pappas, E. A.: Conservation implications of fish–habitat relationships in channelized agricultural headwater streams. J. Environ. Qual., 49, 1585–1598, https://doi.org/10.1002/jeq2.20137, 2020.
Saucier, J.-P., Berger, J.-P., D'Avignon, H., and Racine, P.: Le point d'observation écologique, Ministère des Ressources naturelles, Direction de la gestion des stocks forestiers, Service des inventaires forestiers, 116 pp., ISBN 2-551-13273-8, 1994.
Schwanghart, W. and Heckmann, T.: Fuzzy delineation of drainage basins through probabilistic interpretation of diverging flow algorithms, Environ. Modell. Softw., 33, 106–113, https://doi.org/10.1016/j.envsoft.2012.01.016, 2012.
St-Hilaire, A., Duchesne, S., and Rousseau, A. N.: Floods and water quality in Canada: A review of the interactions with urbanization, agriculture and forestry, Can. Water Resour. J., 41, 273–287, https://doi.org/10.1080/07011784.2015.1010181, 2016.
Tribe, A.: Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method, J. Hydrol., 139, 263–293, https://doi.org/10.1016/0022-1694(92)90206-B, 1992.
Tucker, G. E. and Slingerland, R.: Predicting sediment flux from fold and thrust belts, Basin Res., 8, 329–349, https://doi.org/10.1046/j.1365-2117.1996.00238.x, 1996.
van Meerveld, H. J. I., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S., and Seibert, J.: Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution, Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, 2019.
Wechsler, S. P.: Uncertainties associated with digital elevation models for hydrologic applications: a review, Hydrol. Earth Syst. Sci., 11, 1481–1500, https://doi.org/10.5194/hess-11-1481-2007, 2007.
Weiss, A.: Topographic position and landforms analysis, Poster Presentation, ESRI User Conference, 9–13 July 2001, San Diego, California, USA, 2001.
White, B., Ogilvie, J., Campbell, D. M. H., Hiltz, D., Gauthier, B., Chisholm, H. K. H., Wen, H. K., Murphy, P. N. C., and Arp, P. A.: Using the Cartographic Depth-to-Water Index to Locate Small Streams and Associated Wet Areas across Landscapes, Can. Water Resour. J., 37, 333–347, https://doi.org/10.4296/cwrj2011-909, 2012.
Wohl, E.: The challenges of channel heads, Earth-Sci. Rev., 185, 649–664, https://doi.org/10.1016/j.earscirev.2018.07.008, 2018.
Wu, J., Liu, H., Wang, Z., Ye, L., Li, M., Peng, Y., Zhang, C., and Zhou, H.: Channel head extraction based on fuzzy unsupervised machine learning method, Geomorphology, 391, 107888, https://doi.org/10.1016/j.geomorph.2021.107888, 2021.
Wulder, M. A., Bater, C. W., Coops, N. C., Hilker, T., and White, J. C.: The role of LiDAR in sustainable forest management, Forest. Chron., 84, 807–826, https://doi.org/10.5558/tfc84807-6, 2008.
Short summary
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of the total length of streams, yet their exact locations are still unknown. This article compares different techniques in order to remotely detect the position of these streams. Thus, a database of more than 464 km of headwaters was used to explain what drives their presence. A technique developed in this article makes it possible to detect headwater streams with more accuracy, despite the land uses.
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of...