Articles | Volume 27, issue 11
https://doi.org/10.5194/hess-27-2257-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2257-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its relevance for studying sea level rise and delta flooding
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Philip S. J. Minderhoud
Soil Geography and Landscape group, Wageningen University & Research,
Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Department of Civil, Environmental and Architectural Engineering,
University of Padova, Via Marzolo 9, 35131 Padova, Italy
Department of Subsurface and Groundwater Systems, Deltares Research
Institute, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
Andreas Peffeköver
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Anissa Vogel
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Helmut Brückner
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Frauke Kraas
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Nay Win Oo
East Yangon University, East Yangon University Road, Thanlyin
Township, Thanlyin 11291, Myanmar
Dominik Brill
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Related authors
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Philip S. J. Minderhoud, Ivana Hlavacova, Jan Kolomaznik, and Olaf Neussner
Proc. IAHS, 382, 327–332, https://doi.org/10.5194/piahs-382-327-2020, https://doi.org/10.5194/piahs-382-327-2020, 2020
Short summary
Short summary
The populous and low-lying Vietnamese Mekong delta is facing accelerating subsidence rates and effective mitigation strategies are urgently needed to save-guard the future sustainability of the delta. This paper gathers results from existing measurements and estimates of subsidence in the Mekong delta and presents new, delta-wide estimates of subsidence based on satelite measures. We outline a planned approach to advance towards improved quantitation of individual subsidence drivers.
Max Engel, Stefanie Rückmann, Philipp Drechsler, Dominik Brill, Stephan Opitz, Jörg W. Fassbinder, Anna Pint, Kim Peis, Dennis Wolf, Christoph Gerber, Kristina Pfeiffer, Ricardo Eichmann, and Helmut Brückner
E&G Quaternary Sci. J., 68, 215–236, https://doi.org/10.5194/egqsj-68-215-2020, https://doi.org/10.5194/egqsj-68-215-2020, 2020
Hannes Laermanns, Simon Matthias May, Daniel Kelterbaum, Giorgi Kirkitadze, Stephan Opitz, Levan Navrozashvili, Mikheil Elashvili, and Helmut Brückner
E&G Quaternary Sci. J., 68, 119–139, https://doi.org/10.5194/egqsj-68-119-2019, https://doi.org/10.5194/egqsj-68-119-2019, 2019
Short summary
Short summary
The landscape on the Black Sea coast of Georgia has changed significantly during the last few millennia. By using granulometric and geochemical analyses, we reconstructed significant sea level, coastline and palaeoenvironmental changes that have taken place in the surroundings of the Supsa fan since at least 4000 BCE.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Dominik Brill, Simon Matthias May, Max Engel, Michelle Reyes, Anna Pint, Stephan Opitz, Manuel Dierick, Lia Anne Gonzalo, Sascha Esser, and Helmut Brückner
Nat. Hazards Earth Syst. Sci., 16, 2799–2822, https://doi.org/10.5194/nhess-16-2799-2016, https://doi.org/10.5194/nhess-16-2799-2016, 2016
Short summary
Short summary
Sediments and landforms related to Typhoon Haiyan were documented for coastal settings on the Philippines. Sand sheets are restricted to coasts with strong inundation, while washover fans due to overtopping waves were more abundant. Wave-generated coral ridges are reported from an intertidal reef platform. As generated by an exceptional storm, documented signatures like the limited landward extent of sand sheets may potentially help to distinguish storm and tsunami in the geological record.
S. M. May, M. Engel, D. Brill, C. Cuadra, A. M. F. Lagmay, J. Santiago, J. K. Suarez, M. Reyes, and H. Brückner
Earth Surf. Dynam., 3, 543–558, https://doi.org/10.5194/esurf-3-543-2015, https://doi.org/10.5194/esurf-3-543-2015, 2015
Short summary
Short summary
Block and boulder fields record catastrophic coastal flooding events and play a pivotal role in coastal hazard assessment. After Supertyphoon Haiyan on 8 Nov 2013 the transport of extremely large blocks of up to 180 t in E Samar (Philippines) was documented, indicating that hydrodynamic conditions induced by tropical cyclones, including infragravity waves, and resulting coarse-clast transport patterns may be comparable to tsunamis.
P. S. J. Minderhoud, G. Erkens, V. H. Pham, B. T. Vuong, and E. Stouthamer
Proc. IAHS, 372, 73–76, https://doi.org/10.5194/piahs-372-73-2015, https://doi.org/10.5194/piahs-372-73-2015, 2015
Short summary
Short summary
Land subsidence rates of ~1-4 cm yr-1 are measured in the low-lying Vietnamese Mekong Delta. These relatively high subsidence rates are attributed to groundwater extraction, which has increased drastically over the past decades. There is an urgent need to go from measurements to predictions to test future groundwater management scenarios and reduce subsidence. In this study, we present an approach to build a 3D geo-hydrological model to determine the subsidence potential of the Mekong Delta.
Related subject area
Subject: Coasts and Estuaries | Techniques and Approaches: Remote Sensing and GIS
Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment
A review of marine geomorphometry, the quantitative study of the seafloor
Mikkel Skovgaard Andersen, Áron Gergely, Zyad Al-Hamdani, Frank Steinbacher, Laurids Rolighed Larsen, and Verner Brandbyge Ernstsen
Hydrol. Earth Syst. Sci., 21, 43–63, https://doi.org/10.5194/hess-21-43-2017, https://doi.org/10.5194/hess-21-43-2017, 2017
Short summary
Short summary
The transition zone between land and water is difficult to map due to shallow water depth and often challenging environmental conditions. Airborne topobathymetric lidar is capable of providing both topographic and bathymetric elevation information, resulting in a seamless coverage of the land–water transition zone. We present the processing and performance of topobathymetric lidar data along with a geomorphometric and morphological classification of landforms in a high-energy tidal environment.
Vincent Lecours, Margaret F. J. Dolan, Aaron Micallef, and Vanessa L. Lucieer
Hydrol. Earth Syst. Sci., 20, 3207–3244, https://doi.org/10.5194/hess-20-3207-2016, https://doi.org/10.5194/hess-20-3207-2016, 2016
Short summary
Short summary
Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. More recently, a suite of geomorphometric techniques have been applied to characterize the seafloor. The dynamic, four-dimensional nature of the marine environment and differences in data collection methods cause issues for geomorphometry that are specific to marine applications. This article offers the first review of marine geomorphometry to date.
Cited articles
Aguilar, F. J., Aguilar, M. A., Agüera, F., and Sánchez, J.: The
accuracy of grid digital elevation models linearly constructed from
scattered sample data, Int. J. Geogr. Inf. Sci., 20, 169–192,
https://doi.org/10.1080/13658810500399670, 2006.
Anthony, E. J., Besset, M., Dussouillez, P., Goichot, M., and Loisel, H.:
Overview of the Monsoon-influenced Ayeyarwady River delta, and delta
shoreline mobility in response to changing fluvial sediment supply, Mar.
Geol., 417, 106038, https://doi.org/10.1016/j.margeo.2019.106038, 2019.
Airbus Defence and Space: Copernicus Digital Elevation Model Product
Handbook Version 3.0, Airbus, 38 pp., https://spacedata.copernicus.eu/documents/20123/121239/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_I4.0.pdf (last access: 4 February 2022), 2020.
Berry, P. A. M., Smith, R. G., and Benveniste, J.: ACE2: The New Global
Digital Elevation Model, in: Gravity, Geoid and Earth Observation,
International Association of Geodesy Symposia 135, edited by: Mertiklas,
S. P., Springer, Berlin, Heidelberg, Germany, 231–237,
https://doi.org/10.1007/978-3-642-10634-7_30, 2010.
Becker, M., Papa, F., Karpytchev, M., Delebecque, C., Krien, Y., Khan, J.
U., Ballu, V., Durand, F., Le Cozannet, G., Islam, A. K. M. S., Calmant, S.,
and Shum, C. K.: Water level changes, subsidence, and sea level rise in the
Ganges-Brahmaputra-Meghna delta, P. Natl. Acad. Sci. USA, 117,
1867–1876, https://doi.org/10.1073/pnas.1912921117, 2020.
Bellos, V. and Tsakiris, G.: Comparing Various Methods of Building
Representation for 2D Flood Modelling In Built-Up Areas, Water Resour.
Manag., 29, 379–397, https://doi.org/10.1007/s11269-014-0702-3, 2015.
Bhagabati, S. S., Kawasaki, A., Takeuchi, W., and Win Win Zin: Improving
River Bathymetry and Topography Representation of a Low-Lying Flat River
Basin by Integrating Multiple Sourced Datasets, J. Disaster Res., 15,
335–343, https://doi.org/10.20965/jdr.2020.p0335, 2020.
Brakenridge, G. R., Syvitski, J. P. M., Niebuhr, E., Overeem, I., Higgins,
S. A., Kettner A. J., and Prades, L.: Design with nature: Causation and
avoidance of catastrophic flooding, Myanmar, Earth Sci. Rev., 165, 81–109,
https://doi.org/10.1016/j.earscirev.2016.12.009, 2017.
Brakenridge, G. R., Kettner, A. J., Paris, S., Cohen, S., and Nghiem, S. V.:
River and Reservoir Watch Version 4.5, Satellite-based river discharge and
reservoir area measurements, 1998–present, DFO Flood Observatory, University
of Colorado, USA,
https://floodobservatory.colorado.edu/DischargeAccess.html, last access: 8 September 2022.
Brill, D., Seeger, K., Pint, A., Reize, F., Kay Thwe Hlaing, Seeliger, M.,
Opitz, S., Khin Mi Mi Win, Win Thuzar Nyunt, Nilar Aye, Aung Aung, Kyaw
Kyaw, Kraas, F., and Brückner, H.: Modern and historical tropical
cyclone and tsunami deposits at the coast of Myanmar: Implications for their
identification and preservation in the geological record, Sedimentology, 67,
1431–1459, https://doi.org/10.1111/sed.12586, 2020.
Brosens, L., Campforts, B., Govers, G., Aldana-Jague, E., Razanamahandry, V. F., Razafimbelo, T., Rafolisy, T., and Jacobs, L.: Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar), Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, 2022.
Bucx, T., van Driel, W., de Boer, H., Graas, S., Langenberg, V. T.,
Marchand, M., and Van de Guchte, C.: Comparative assessment of the
vulnerability and resilience of deltas – extended version with 14 deltas –
synthesis report, Delta Alliance International, Delft-Wageningen, The
Netherlands, Delta Alliance report number 7, 145 pp., https://core.ac.uk/download/pdf/29208993.pdf (last access: 22 April 2022), 2014.
Candela, T. and Koster, K.: The many faces of anthropogenic subsidence,
Science, 376, 1381–1382, https://doi.org/10.1126/science.abn3676,
2022.
Chen, D., Li, X., Saito, Y., Liu, J. P., Duan, Y., Liu, S., and Zhang, L.:
Recent evolution of the Irrawaddy (Ayeyarwady) Delta and the impacts of
anthropogenic activities: A review and remote sensing survey, Geomorphology,
365, 107231, https://doi.org/10.1016/j.geomorph.2020.107231, 2020.
Chen, J., Huang, G., and Chen, E.: Towards better flood risk management:
Assessing flood risk and investigating the potential mechanisms based on
machine learning models, J. Environ. Manage., 293, 112810,
https://doi.org/10.1016/j.jenvman.2021.112810, 2021.
Church, J. A., White, N. J., and Hunter, J. R.: Sea-level rise at tropical
Pacific and Indian Ocean islands, Global Planet. Change, 53, 155–168,
https://doi.org/10.1016/j.gloplacha.2006.04.001, 2006.
Climate Service Center Germany (GERICS) and KfW Development Bank: Regional
Sea Level Rise South Asia, KfW, Hamburg and Frankfurt am Main, Climate Focus
Paper 2015, 12 pp., https://www.kfw-entwicklungsbank.de/PDF/Entwicklungsfinanzierung/Themen-NEU/Regional-Sea-Level-Change-South-Asia.pdf (last access: 17 February 2022), 2015.
Crippen, R., Buckley, S., Agram, P., Belz, E., Gurrola, E., Hensley, S., Kobrick, M., Lavalle, M., Martin, J., Neumann, M., Nguyen, Q., Rosen, P., Shimada, J., Simard, M., and Tung, W.: NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 125–128, https://doi.org/10.5194/isprs-archives-XLI-B4-125-2016, 2016.
Department of Meteorology and Hydrology and Ministry of Transport:
Myanmar's National Adaptation Programme of Action (NAPA) to Climate Change,
United Nations Environment Programme (UNEP), 126 pp., https://unfccc.int/resource/docs/napa/mmr01.pdf (last access: 23 February 2021), 2012.
Du, X., Guo, H., Fan, X., Zhu, J., Yan, Z., and Zhan, Q.: Vertical accuracy
assessment of freely available digital elevation models over low-lying
coastal plains, Int. J. Digit. Earth, 9, 252–271,
https://doi.org/10.1080/17538947.2015.1026853, 2016.
East View Geospatial, Inc.: EVMap50-MMR 1:50,000 Scale Topographic Maps,
Minnetonka, Minnesota, https://shop.geospatial.com/publication/YM9EX4368GHN4EARJCAM1TJVA6/EVMap50-MMR-1-to-50000-Scale-Topographic-Maps (last access: 29 March 2021), 2014.
El-Quilish, M., El-Ashquer, M., Dawod, G., and El Fiky, G.: Development and
Accuracy Assessment of High-Resolution Digital Elevation Model Using GIS
Approaches for the Nile Delta Region, Egypt, American Journal of Geographic
Information System, 7, 107–117, 2018.
ESRI: ESRI Satellite (ArcGIS/World_Imagery), https://qms.nextgis.com/geoservices/1300/ (last access: 30 April 2023), 2017.
ESRI: Cell size and resampling in analysis, https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/performing-analysis/cell-size-and-resampling-in-analysis.htm, last access: 4 April 2023.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Fee, L., Gilbert, M., Bartlett, R., Capizzi, P., Horton, R., and Lesk, C.:
Climate Change Vulnerability Assessment of Labutta Township, Myanmar,
2016–2050: scenarios for building resilience, UN-Habitat and
UN-Environment, Nairobi, Kenya, 168 pp., http://themimu.info/sites/themimu.info/files/documents/Report_Climate_Change_Vulnerability_Assessment_of_Labutta_Township_2016-2050_ENG.pdf (last access: 22 February 2021), 2017.
Fereshtehpour, M. and Karamouz, M.: DEM Resolution Effects on Coastal Flood
Vulnerability Assessment: Deterministic and Probabilistic Approach, Water
Resour. Res., 54, 4965–4982, https://doi.org/10.1029/2017WR022318, 2018.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdoìttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,
Salleìe, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and
Sea Level Change, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Peìan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci̧, O., Yu,
R., and Zhou, B., Cambridge University Press, Cambridge, 9-1–9-257, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_09.pdf (last access: 22 October 2022), 2021.
Frenken, K.: Irrigation in Southern and Eastern Asia in figures: AQUASTAT
Survey – 2011, FAO, Rome, Italy, FAO Water Reports 37, 512 pp., https://www.ipcinfo.org/fileadmin/user_upload/faowater/docs/WR_37_web.pdf (last access: 16 February 2021), 2012.
Fritz, H. M., Blount, C. D., Swe Thwin, Moe Kyaw Thu, and Nyein Chan:
Cyclone Nargis storm surge in Myanmar, Nat. Geosci., 2, 448–449,
https://doi.org/10.1038/ngeo558, 2009.
Furlan, E., Dalla Pozza, P., Michetti, M., Torresan, S., Critto, A., and
Marcomini, A.: Development of a Multi-Dimensional Coastal Vulnerability
Index: Assessing vulnerability to inundation scenarios in the Italian coast,
Sci. Total Environ., 772, 144650,
https://doi.org/10.1016/j.scitotenv.2020.144650, 2021.
Furuichi, T., Win, Z., and Wasson, R. J.: Discharge and suspended sediment
transport in the Ayeyarwady River, Myanmar: Centennial and decadal changes,
Hydrol. Process., 23, 1631–1641, https://doi.org/10.1002/hyp.7295, 2009.
Garner, G. G., Hermans, T., Kopp, R. E., Slangen, A. B. A., Edwards, T. L.,
Levermann, A., Nowikci, S., Palmer, M. D., Smith, C., Fox-Kemper, B.,
Hewitt, H. T., Xiao, C., Aðalgeirsdoìttir, G., Drijfhout, S. S.,
Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix,
A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Salleìe, J.-B.,
Yu, Y., Hua, L., Palmer, T., and Pearson, B.: IPCC AR6 Sea-Level Rise
Projections, Version 20210809, PO.DAAC [data set], CA, USA,
https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report (last access: 23 May 2022),
2021.
Garner, G. G., Kopp, R. E., Hermans, T., Slangen, A. B. A., Koubbe, G.,
Turilli, M., Jha, S., Edwards, T. L., Levermann, A., Nowikci, S., Palmer, M.
D., and Smith, C.: Framework for Assessing Changes To Sea-level (FACTS),
Geoscientific Model Development, Zenodo [model], https://doi.org/10.5281/zenodo.6419954, 2022.
Gesch, D. B.: Analysis of Lidar Elevation Data for Improved Identification
and Delineation of Lands Vulnerable to Sea-Level Rise, J. Coastal Res., 53,
49–58, https://doi.org/10.2112/SI53-006.1, 2009.
Gesch, D. B.: Consideration of Vertical Uncertainty in Elevation-Based
Sea-Level Rise Assessments: Mobile Bay, Alabama Case Study, J. Coastal. Res.,
63, 197–210, https://doi.org/10.2112/SI63-016.1, 2013.
Gesch, D. B.: Best Practices for Elevation-Based Assessments of Sea-Level
Rise and Coastal Flooding Exposure, Front. Earth Sci., 6, 1–19,
https://doi.org/10.3389/feart.2018.00230, 2018.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Government of the Union of Myanmar: Myanmar – Post-disaster needs
assessment of floods and landslides July–September 2015, Government of the
Union of Myanmar, 267 pp., https://documents1.worldbank.org/curated/en/646661467990966084/pdf/103631-WP-P157276-PUBLIC-PFLNA-Report-2016.pdf (last access: 26 May 2021), 2015.
Habel, S., Fletcher, C. H., Anderson, T. R., and Thompson, P. R.: Sea-Level
Rise Induced Multi-Mechanism Flooding and Contribution to Urban
Infrastructure Failure, Sci. Rep., 10, 3796,
https://doi.org/10.1038/s41598-020-60762-4, 2020.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Clim. Change, 104, 89–111,
https://doi.org/10.1007/s10584-010-9977-4, 2011.
Hashimoto, R., Kazama, S., Hashimoto, T., Oguma, K., and Takizawa, S.:
Planning methods for conjunctive use of urban water resources based on
quantitative water demand estimation models and groundwater regulation index
in Yangon City, Myanmar, J. Clean. Prod., 367, 133123,
https://doi.org/10.1016/j.jclepro.2022.133123, 2022.
Hawker, L., Neal, J., and Bates, P.: Accuracy assessment of the TanDEM-X 90
Digital Elevation Model for selected floodplain sites, Remote Sens.
Environ., 232, 111319, https://doi.org/10.1016/j.rse.2019.111319, 2019.
Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal,
J.: A 30 m global map of elevation with forests and buildings removed,
Environ. Res. Lett., 17, 024016, https://doi.org/10.1088/1748-9326/ac4d4f,
2022.
Hedley, P. J., Bird, M. I., and Robinson, R. A. J.: Evolution of the
Irrawaddy delta region since 1850, Geogr. J., 176,
138–149, https://doi.org/10.1111/j.1475-4959.2009.00346.x, 2010.
Hein Min Htet: Flood Risk Mapping Using Satellite Images and GIS Tools: A
study on flood analysis of Thabaung, Kangyidaunt and Pathein Area,
Ayeyarwady Region, The First Myanmar National Conference on Earth Sciences
(MNCES) 2017, University of Monywa, Monywa, Myanmar, 27–28 November 2017,
https://cwmd.kumamoto-u.ac.jp/conference/abstract/UDP09_CWMDInternationalConference2019.pdf (last access: 13 June 2023),
2017.
Hirt, C.: Artefact detection in global digital elevation models (DEMs): The
Maximum Slope Approach and its application for complete screening of the
SRTM v4.1 and MERIT DEMs, Remote Sens. Environ., 207, 27–41,
https://doi.org/10.1016/j.rse.2017.12.037, 2018.
Horton, R., De Mel, M., Peters, D., Lesk, C., Bartlett, R., Helsingen, H.,
Bader, D., Capizzi, P., Martin, S., and Rosenzweig, C.: Assessing Climate
Risk in Myanmar: Technical Report, Center for Climate Systems Research at
Columbia University, WWF-US and WWF-Myanmar, 88 pp., https://unhabitat.org/sites/default/files/2019/10/assessing-climate-risk-in-myanmar_technical-report.pdf (last
access: 24 August 2022),, 2017.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., Tan, J.: GPM
IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06,
edited by: Savtchenko, A.,
Greenbelt, Maryland, Goddard Earth Sciences Data and Information Services
Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERGDF/DAY/06, 2019.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and
Contributions to Sea Level Variations at the Coast, Surv. Geophys., 40,
1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019.
Inman, V. L. and Lyons, M. B.: Automated Inundation Mapping Over Large
Areas Using Landsat Data and Google Earth Engine, Remote Sens., 12, 1348,
https://doi.org/10.3390/rs12081348, 2020.
International Centre for Water Hazard and Risk Management (ICHARM), Public
Works Research Institute (PWRI), CTI Engineering International Co., Ltd.,
CTI Engineering Co., Ltd, and PASCO CORPORATION: Republic of the Union of
Myanmar: Transformation of Urban Management – Flood Management Component,
Asian Development Bank, Tsukuba and Tokyo, Japan, Technical Assistance
Consultant's Report, Final Report Annexes 1–7, 159 pp., https://www.adb.org/sites/default/files/project-documents/46496/46496-001-tacr-en_1.pdf (last access: 20 September 2021), 2016.
International Federation of Red Cross and Red Crescent Societies (IFRC):
Final Report Myanmar: Floods, IFRC, 31 pp., https://reliefweb.int/attachments/4538c1f0-77dc-3db8-967b-33b4709f57eb/MDRMM006FR.pdf (last access: 24 June 2021), 2017.
Japan International Cooperation Agency (JICA): Preparatory Survey Report on
the Project for the Improvement of Water Supply, Sewerage and Drainage
System in Yangon City in the Republic of the Union of Myanmar – Volume III:
Water Supply System Master Plan, JICA, 275 pp., https://openjicareport.jica.go.jp/pdf/12175618_01.pdf (last access: 24 October 2022), 2014.
Japan International Cooperation Agency (JICA), Myanmar Survey Department,
and Ministry of Forestry: The study on the establishment of geographic
database for national rehabilitation and development programme in the Union
of Myanmar – Final Report Volume 1: Main report, JICA, 86 pp., https://openjicareport.jica.go.jp/pdf/11766771_01.pdf (last access: 25 October 2021), 2004.
Khin Thandar Win, Nilar Aye, and Kyaw Zaya Htun: Vulnerability of Flood
Hazard in Selected Ayeyarwady Delta Region, Myanmar, International Journal
of Science and Engineering Applications, 3, 44–48,
https://doi.org/10.7753/IJSEA0303.1003, 2014.
Kittiphong Phongsaphan, Chishtie, F., Poortinga, A., Bhandari, B., Chinaporn
Meechaiya, Thannarot Kunlamai, Khun San Aung, Saah, D., Anderson, E.,
Markert, K., Markert, A., and Peeranan Towashiraporn: Operational Flood Risk
Index Mapping for Disaster Risk Reduction Using Earth Observations and Cloud
Computing Technologies: A Case Study on Myanmar, Front. Environ. Sci., 7,
191, https://doi.org/10.3389/fenvs.2019.00191, 2019.
Kravtsova, V. I., Mikhailov, V. N., and Kidyaeva, V. M.: Hydrological
Regime, Morphological Features and Natural Territorial Complexes of the
Irrawaddy River Delta (Myanmar), Water Resour., 36, 243–260,
https://doi.org/10.1134/S0097807809030014, 2009.
Kulp, S. A. and Strauss, B. H.: CoastalDEM: A global coastal digital
elevation model improved from SRTM using a neural network, Remote Sens.
Environ., 206, 231–239, https://doi.org/10.1016/j.rse.2017.12.026,
2018.
Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of
global vulnerability to sea-level rise and coastal flooding. Nat. Commun.,
10, 1–12, https://doi.org/10.1038/s41467-019-12808-z, 2019.
Kulp, S. A. and Strauss, B. H.: CoastalDEM v2.1: A high-accuracy and
high-resolution global coastal elevation model trained on ICESat-2 satellite
lidar, Climate Central Scientific Report, 17 pp., https://assets.ctfassets.net/cxgxgstp8r5d/3f1LzJSnp7ZjFD4loDYnrA/71eaba2b8f8d642dd9a7e6581dce0c66/CoastalDEM_2.1_Scientific_Report_.pdf (last access: 2 December 20220), 2021.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, EOS T. Am. Geophys. Un., 89, 93–94,
https://doi.org/10.1029/2008EO100001, 2008.
Liu, J., Wang, X., Zhang, B., Li, J., Zhang, J., and Liu, X.: Storm flood
risk zoning in the typical regions of Asia using GIS technology, Nat.
Hazards, 87, 1691–1707, https://doi.org/10.1007/s11069-017-2843-1, 2017.
Loucks, D. P.: Developed river deltas: are they sustainable?, Environ. Res.
Lett., 14, 113004, https://doi.org/10.1088/1748-9326/ab4165, 2019.
Luo, S., Shao, D., Long, W., Liu, Y., Sun, T., and Cui, B.: Assessing
“coastal squeeze” of wetlands at the Yellow River Delta in China: A case
study, Ocean Coast. Manage., 153, 193–202,
https://doi.org/10.1016/j.ocecoaman.2017.12.018, 2018.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou, B. (Eds.): Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport_small.pdf (last access: 20 May 2022), 2021.
McLaughlin, S. and Cooper, J. A. G.: A multi-scale coastal vulnerability
index: A tool for coastal managers?, Environ. Hazards, 9, 233–248,
https://doi.org/10.3763/ehaz.2010.0052, 2010.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi,
H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on
subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006,
https://doi.org/10.1088/1748-9326/aa7146, 2017.
Minderhoud, P. S. J., Coumou, L., Erban, L. E., Middelkoop, H., Stouthamer,
E., and Addink, E. A.: The relation between land use and subsidence in the
Vietnamese Mekong delta, Sci. Total Environ., 634, 715–726,
https://doi.org/10.1016/j.scitotenv.2018.03.372, 2018.
Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., and
Stouthamer, E.: Mekong delta much lower than previously assumed in sea-level
rise impact assessments, Nat. Commun., 10, 1–13,
https://doi.org/10.1038/s41467-019-11602-1, 2019.
Minderhoud, P. S. J., Middelkoop, H., Erkens, G., and Stouthamer, E.:
Groundwater extraction may drown mega-delta: projections of
extraction-induced subsidence and elevation of the Mekong delta for the 21st
century, Environ. Res. Commun., 2, 011005,
https://doi.org/10.1088/2515-7620/ab5e21, 2020.
Moharrami, M., Javanbakht, M., and Attarchi, S.: Automatic flood detection
using sentinel-1 images on the google earth engine, Environ. Monit. Assess.,
193, 248, https://doi.org/10.1007/s10661-021-09037-7, 2021.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P.
J.: A global reanalysis of storm surges and extreme sea levels, Nat.
Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Mulhern, O.: Sea Level Rise Projection Map – Rangoon,
https://earth.org/data_visualization/sea-level-rise-by-2100-rangoon/ (last access: 31 August 2022), 2020.
Myat Myat Thi, Gunawardhana, L. N., and Kazama, S.: A comparison of
historical land-use change patterns and recommendations for flood plain
developments in three delta regions in Southeast Asia, Water Int., 37,
218–235, https://doi.org/10.1080/02508060.2012.687511, 2012.
National Aeronautics and Space Administration (NASA): Giovanni – The Bridge
Between Data and Science v 4.37, https://giovanni.gsfc.nasa.gov/giovanni/,
last access: 18 June 2021.
National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL): NASA Shuttle Radar Topography Mission Water Body Data Shapefiles & Raster Files, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MEaSUREs/SRTM/SRTMSWBD.003, 2013.
Nicholls, R. J. and Cazenave, A.: Sea-Level Rise and Its Impact on Coastal
Zones, Science, 328, 1517–1520,
https://doi.org/10.1126/science.1185782, 2010.
Nicholls, R. J., Adger, W. N., Hutton, C. W., and Hanson, S. E. (Eds.):
Deltas in the Anthropocene, Palgrave Macmillan, Cham, Switzerland, 282 pp.,
https://doi.org/10.1007/978-3-030-23517-8, 2020.
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T.,
Meyssignac, B., Hanson, S. E., Merkens, J-L., and Fang, J.: A global
analysis of subsidence, relative sea-level change and coastal flood
exposure, Nat. Clim. Change, 11, 338–342,
https://doi.org/10.1038/s41558-021-00993-z, 2021.
Nirwansyah, A. W. and Braun, B.: Tidal Flood Risk on Salt Farming:
Evaluation of Post Events in the Northern Part of Java Using a Parametric
Approach, Geosciences, 11, 420,
https://doi.org/10.3390/geosciences11100420, 2021.
Ottinger, M., Kuenzer, C., Liu, G., Wang, S., and Dech, S.: Monitoring land
cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat
5 TM, Appl. Geogr., 44, 53–68,
https://doi.org/10.1016/j.apgeog.2013.07.003, 2013.
Permanent Service for Mean Sea Level (PSMSL): Permanent Service for Mean Sea
Level – Tide Gauge Data, https://psmsl.org/data/obtaining/, last access: 3 May 2021.
Ramaswamy, V., Rao, P. S., Rao, K. H., Swe Thwin, Srinivasa Rao, N., and
Raiker, V.: Tidal influence on suspended sediment distribution and dispersal
in the northern Andaman Sea and Gulf of Martaban, Mar. Geol., 208, 33–42,
https://doi.org/10.1016/j.margeo.2004.04.019, 2004.
Rao, P. S., Ramaswamy, V., and Swe Thwin: Sediment texture, distribution and
transport on the Ayeyarwady continental shelf, Andaman Sea, Mar. Geol.,
216, 239–247, https://doi.org/10.1016/j.margeo.2005.02.016, 2005.
Renaud, F. G., Syvitski, J. P. M., Sebesvari, Z., Werners, S. E., Kremer,
H., Kuenzer, C., Ramesh, R., Jeuken, A., and Friedrich, J.: Tipping from the
Holocene to the Anthropocene: How threatened are major world deltas?, Curr.
Opin. Environ. Sustain., 5, 644–654,
https://doi.org/10.1016/j.cosust.2013.11.007, 2013.
Rincón, D., Khan, U. T., and Armenakis, C.: Flood Risk Mapping Using GIS
and Multi-Criteria Analysis: A Greater Toronto Area Case Study, Geosciences,
8, 275, https://doi.org/10.3390/geosciences8080275, 2018.
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res. Lett., 41,
8918–8925, 2014.
Rose, A., McKee, J., Sims, K., Bright, E., Reith, A., and Urban, M.:
LandScan Global 2020, Oak Ridge National Laboratory [data set],
https://doi.org/10.48690/1523378, 2021.
Sakai, T., Omori, K., Aung Naing Oo, and Yan Zaung Zaw: Monitoring saline
intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2
satellite mission, Paddy Water Environ., 19, 283–294,
https://doi.org/10.1007/s10333-020-00837-0, 2021.
Schneider, P. and Asch, F.: Rice production and food security in Asian Mega
deltas – A review on characteristics, vulnerabilities and agricultural
adaptation options to cope with climate change, J. Agron. Crop Sci., 206,
491–503, https://doi.org/10.1111/jac.12415, 2019.
Schubert, J. E. and Sanders, B. F.: Building treatments for urban flood
inundation models and implications for predictive skill and modeling
efficiency, Adv. Water Resour., 41, 49–64,
https://doi.org/10.1016/j.advwatres.2012.02.012, 2012.
Schumann, G., Bates, P. D., Apel, H., and Aronica, G. T.: Global Flood
Hazard Mapping, Modeling, and Forecasting: Challenges and Perspectives, in:
Global Flood Hazard – Applications in Modeling, Mapping, and Forecasting,
edited by: Schumann, G. J.-P., Apel, H., and Aronica, G. T., American
Geophysical Union, Washington D.C., 239–244,
https://doi.org/10.1002/9781119217886.ch14, 2018.
Schumann, G. J.-P. and Bates, P. D.: The Need for a High-Accuracy,
Open-Access Global DEM, Front. Earth Sci., 6, 225,
https://doi.org/10.3389/feart.2018.00225, 2018.
Schumann, G. J.-P., Bates, P. D., Neal., J. C., and Andreadis, K. M.: Fight
floods on a global scale, Nature, 507, 169, https://doi.org/10.1038/507169e,
2014.
Seeger, K., Minderhoud, P. S. J., Peffeköver, A., Vogel, A.,
Brückner, H., Kraas, F., Nay Win Oo, and Brill, D.: Local digital
elevation model for the Ayeyarwady Delta in Myanmar (AD-DEM) derived from
digitised spot and contour heights of topographic maps, Zenodo [data set],
https://doi.org/10.5281/zenodo.7875964, 2023a.
Seeger, K., Minderhoud, P. S. J., Peffeköver, A., Vogel, A.,
Brückner, H., Kraas, F., Nay Win Oo, and Brill, D.: FABDEM V1-0 adjusted
for the Ayeyarwady Delta in Myanmar by local spot height data from
topographic maps, Zenodo [data set], https://doi.org/10.5281/zenodo.7875855,
2023b.
Shirzaei, M., Freymueller, J., Törnqvist, T., Galloway, D. L., Dura, T.,
and Minderhoud, P. S. J.: Measuring, modelling and projecting coastal land
subsidence, Nat. Rev. Earth Environ., 2, 40–58,
https://doi.org/10.1038/s43017-020-00115-x, 2021.
Siart, C., Bubenzer, O., and Eitel, B.: Combining digital elevation data
(SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for
geomorphological mapping: A multi-component case study on Mediterranean
karst in Central Crete, Geomorphology, 112, 106–121,
https://doi.org/10.1016/j.geomorph.2009.05.010, 2009.
Specialised Information Service Cartography and Geodata (SIS Maps): Topo
List,
https://kartographie.staatsbibliothek-berlin.de/en/about-us/map-catalogs/topo-list/,
last access: 29 March 2021.
Syvitski, J. P. M.: Deltas at risk, Sustain. Sci., 3, 23–32,
https://doi.org/10.1007/s11625-008-0043-3, 2008.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon,
M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y.,
Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities,
Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009.
Szabo, S., Brondizio, E., Renaud, F. G., Scott, H., Nicholls, R. J.,
Matthews, Z., Tessler, Z., Tejedor, A., Sebesvari, Z., Foufoula-Georgiou,
E., da Coasta, S., and Dearing, J. A.: Population dynamics, delta
vulnerability and environmental change: comparison of the Mekong,
Ganges-Brahmaputra and Amazon delta regions, Sustain. Sci., 11, 539–554,
https://doi.org/10.1007/s11625-016-0372-6, 2016.
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z.,
Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R.,
and Carabajal, C.: ASTER Global Elevation Model Version 2 – Summary of
Validation Results, National Aeronautics and Space Administration (NASA)
Land Processes Distributed Active Archive Center, and Joint Japan-US ASTER
Science Team, 26 pp., https://lpdaac.usgs.gov/documents/220/Summary_GDEM2_validation_report_final.pdf (last access: 30 August 2022), 2011.
Tadono, T., Shimada, M., Murakami, H., and Takaku, J.: Calibration of PRISM and AVNIR-2 Onboard ALOS “Daichi”, IEEE T. Geosci. Remote, 47, 4042–4050, https://doi.org/10.1109/TGRS.2009.2025270, 2009.
Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: GENERATION OF THE 30 M-MESH GLOBAL DIGITAL SURFACE MODEL BY ALOS PRISM, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 157–162, https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016, 2016.
Tay, C., Lindsey, E. O., Shi Tong Chin, McCaughey, J. W., Bekaert, D.,
Nguyen, M., Hoa, H., Manipon, G., Karim, M., Horton, B. P., Tanghua Li, and
Hill, E. M.: Sea-level rise from land subsidence in major coastal cities,
Nat. Sustain., 5, 1–9, https://doi.org/10.1038/s41893-022-00947-z, 2022.
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I.,
Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk
and sustainability in coastal deltas of the world, Science, 349,
638–643, https://doi.org/10.1126/science.aab3574, 2015.
Torbick, N., Chowdhury, D., Salas, W., and Qi, J.: Monitoring Rice
Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by
Landsat-8 and PALSAR-2, Remote Sens., 9, 119,
https://doi.org/10.3390/rs9020119, 2017.
Tripathy, P. and Malladi, T.: Global Flood Mapper: a novel Google Earth
Engine application for rapid flood mapping using Sentinel-1 SAR, Nat.
Hazards, 114, 1341–1363, https://doi.org/10.1007/s11069-022-05428-2, 2022.
Tran, H., Tran, T., and Kervyn, M.: Dynamics of Land Cover/Land Use Changes in the Mekong Delta, in the Mekong Delta, 1973–2011: A Remote Sensing Analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam, Remote Sens., 7, 2899–2925, https://doi.org/10.3390/rs70302899, 2015.
United Nations Platform for Space-based Information for Disaster Management
and Emergency Response (UN-SPIDER): SAR-Flood mapping using a change
detection approach,
https://www.un-spider.org/sites/default/files/Code_GEE_flood_mapping.txt (last access: 22 June 2021), 2019.
Üstün, A., Abbak, R. A., and Zeray Östürk, E.: Height biases
of SRTM DEM related to EGM96: from a global perspective to regional
practice, Surv. Rev., 50, 26–35,
https://doi.org/10.1080/00396265.2016.1218159, 2016.
Van Binh, D., Kantoush, S., and Sumi, T.: Changes to long-term discharge and
sediment loads in the Vietnamese Mekong Delta caused by upstream dams,
Geomorphology, 353, 107011, https://doi.org/10.1016/j.geomorph.2019.107011,
2020.
van der Horst, T., Rutten, M. M., van de Giesen, N. C., and Hanssen, R. F.:
Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent
scatterer interferometry and assessment of driving mechanisms, Remote Sens.
Environ., 217, 101–110, https://doi.org/10.1016/j.rse.2018.08.004, 2018.
van de Sande, B., Lansen, J., and Hoyng, C.: Sensitivity of Coastal Flood
Risk Assessments to Digital Elevation Models, Water, 4, 568–579,
https://doi.org/10.3390/w4030568, 2012.
van Driel, W. F., and Nauta, T. A.: Vulnerability and Resilience Assessment
of the Ayeyarwady Delta in Myanmar, Full assessment phase, Delta Alliance
report no. 10, Bay of Bengal Large Marine Ecosystem (BOBLME) Project, Global
Water Partnership (GWP) and Delta Alliance, Delft-Wageningen, the
Netherlands, 148 pp., https://themimu.info/sites/themimu.info/files/documents/Report_Vulnerability_Resilience_Assessment_Ayeyarwady_Delta_Feb2015.pdf (last access: 22 February 2021), 2014.
Vernimmen, R., Hooijer, A., and Pronk, M.: New ICESat-2 Satellite LiDAR Data
Allow First Global Lowland DTM Suitable for Accurate Coastal Flood Risk
Assessment, Remote Sens., 12, 2827, https://doi.org/10.3390/rs12172827,
2020.
Viossanges, M., Johnston, R., and Drury, L.: Groundwater Resources of the
Ayeyarwady Basin, Ayeyarwady State of the Basin Assessment (SOBA) Report 2a,
National Water Resources Committee (NWRC), Myanmar, 168 pp., http://themimu.info/sites/themimu.info/files/assessment_file_attachments/SOBA2a_Groundwater_Resources_ARB.pdf (last access: 12 July 2021), 2017.
Vogel, A., Seeger, K., Brill, D., Brückner, H., Khin Khin Soe, Nay Win
Oo, Nilar Aung, Zin Nwe Myint, and Kraas, F.: Identifying Land-Use Related
Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the
Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model, Remote
Sens., 14, 3568, https://doi.org/10.3390/rs14153568, 2022.
Wang, H., Saito, Y., Zhang, Y., Bi, N., Sun, X., and Yang, Z.: Recent
changes of sediment flux to the western Pacific Ocean from major rivers in
East and Southeast Asia, Earth Sci. Rev., 108, 80–100,
https://doi.org/10.1016/j.earscirev.2011.06.003, 2011.
Wang, S.-Y., Buckley, B. M., Yoon, J.-H., and Fosu, B.: Intensification of
premonsoon tropical cyclones in the Bay of Bengal and its impacts on
Myanmar, J. Geophys. Res.-Atmos., 118, 4373–4384,
https://doi.org/10.1002/jgrd.50396, 2013.
Webb, E. L., Jachowski, N. R. A., Phelps, J., Friess, D. A., Maung Maung
Than, and Ziegler, A. D.: Deforestation in the Ayeyarwady Delta and the
conservation implications of an internationally-engaged Myanmar, Global
Environ. Chang., 24, 321–333,
https://doi.org/10.1016/j.gloenvcha.2013.10.007, 2014.
Wechsler, S. P.: Uncertainties associated with digital elevation models for hydrologic applications: a review, Hydrol. Earth Syst. Sci., 11, 1481–1500, https://doi.org/10.5194/hess-11-1481-2007, 2007.
Wessel, B.: TanDEM-X Ground Segment – DEM Products Specification Document,
EOC, DLR, Oberpfaffenhofen, Germany, Public Document TD-GS-PS-0021, Issue
3.2, https://tandemx-science.dlr.de/ (last access: 12 September 2022), 2018.
Williams, S. J.: Sea-Level Rise Implications for Coastal Regions, J. Coastal.
Res., 63, 184–196, https://doi.org/10.2112/SI63-015.1, 2013.
Win Win Zin and Rutten, M.: Long-term Changes in Annual Precipitation and
Monsoon Seasonal Characteristics in Myanmar, Hydrol. Curr. Res., 8, 1–8,
https://doi.org/10.4172/2157-7587.1000271, 2017.
Woodroffe, C. D., Nicholls, R. J., Saito, Y., Chen, Z., and Goodbred, S. L.: Landscape variability and the response of Asian megadeltas to environmental change, in: Global Change and Integrated Coastal Management, edited by: Harvey, N., Springer, Dordrecht, the Netherlands, 277–314, https://doi.org/10.1007/1-4020-3628-0_10, 2006.
Xu, K., Fang, J., Fang, Y., Sun, Q., Wu, C., and Liu, M.: The Importance of
Digital Elevation Model Selection in Flood simulation and a Proposed Method
to Reduce DEM Errors: A Case Study in Shanghai, Int. J. Disast. Risk Sc.,
12, 890–902, https://doi.org/10.1007/s13753-021-00377-z, 2021.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Zhang, K., Gann, D., Ross, M., Robertson, Q., Sarmiento, J., Santana, S.,
Rhome, J., and Fritz, C.: Accuracy assessment of ASTER, SRTM, ALOS, and TDX
DEMs for Hispaniola and implications for mapping vulnerability to coastal
flooding, Remote Sens. Environ., 225, 290–306,
https://doi.org/10.1016/j.rse.2019.02.028, 2019.
Zin Mie Mie Sein, Ullah, I., Saleem, F., Zhi, X., Syed, S., and Azam, K.:
Interdecadal Variability in Myanmar Rainfall in the Monsoon Season
(May–October) Using Eigen Methods, Water, 13, 729,
https://doi.org/10.3390/w13050729, 2021.
Zoccarato, C., Minderhoud, P. S. J., and Teatini, P.: The role of
sedimentation and natural compaction in a prograding delta: insights from
the mega Mekong delta, Vietnam, Sci. Rep., 8, 11437,
https://doi.org/10.1038/s41598-018-29734-7, 2018.
Zöckler, C. and Kottelat, M.: Biodiversity of the Ayeyarwady Basin,
Ayeyarwady State of the Basin Assessment (SOBA) Report 4.5, National Water
Resources Committee (NWRC), Myanmar, 194 pp., https://themimu.info/sites/themimu.info/files/assessment_file_attachments/SOBA4.5_Biodiversity_of_the_Ayeyarwady_Basin.pdf (last access: 12 July 2021), 2017.
Short summary
Accurate elevation data is essential for flood risk assessment. We assess land elevation to local mean sea level of the Ayeyarwady Delta with a new, local DEM based on geodetic data and evaluate the performance of 10 global DEMs in an SLR impact assessment. Our study reveals major differences in performance between global DEMs and consequentially introduced uncertainty in SLR impact assessments, indicating potential similar uncertainties for other data-poor coastal lowlands around the world.
Accurate elevation data is essential for flood risk assessment. We assess land elevation to...