Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5207-2022
https://doi.org/10.5194/hess-26-5207-2022
Research article
 | 
18 Oct 2022
Research article |  | 18 Oct 2022

Effect of tides on river water behavior over the eastern shelf seas of China

Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo

Related authors

Optimizing output operations in high-resolution climate models through dynamic scheduling
Dong Wang and Xiaomeng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3533,https://doi.org/10.5194/egusphere-2024-3533, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Multiple timescale variations in fronts in the Seto Inland Sea, Japan
Menghong Dong and Xinyu Guo
Ocean Sci., 20, 1527–1546, https://doi.org/10.5194/os-20-1527-2024,https://doi.org/10.5194/os-20-1527-2024, 2024
Short summary
Effects of Submarine Groundwater on Nutrient Concentration and Primary Production in a Deep Bay of the Japan Sea
Menghong Dong, Xinyu Guo, Takuya Matsuura, Taichi Tebakari, and Jing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2581,https://doi.org/10.5194/egusphere-2024-2581, 2024
Short summary
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023,https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
Interannual variation of a bottom cold water mass in the Seto Inland Sea, Japan
Junying Zhu, Jie Shi, and Xinyu Guo
Ocean Sci., 18, 659–673, https://doi.org/10.5194/os-18-659-2022,https://doi.org/10.5194/os-18-659-2022, 2022
Short summary

Related subject area

Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Effects of boundary conditions and aquifer parameters on salinity distribution and mixing controlled reactions in high-energy beach aquifers
Rena Meyer, Janek Greskowiak, Stephan L. Seibert, Vincent E. Post, and Gudrun Massmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-196,https://doi.org/10.5194/hess-2024-196, 2024
Revised manuscript accepted for HESS
Short summary
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024,https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024,https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023,https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022,https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary

Cited articles

Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013. 
Blumberg, A. F.: A primer for ECOMSED user manual [version 1.3], technical report, HydroQual, Mahwah, N. J., 2002. 
Blumberg, A. F. and Mellor, G. L.: A Description of a Three-Dimensional Coastal Ocean Circulation Model, in: Three-Dimensional Coastal Ocean Models, American Geophysical Union (AGU), 4, 1–16, 1987. 
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J. Adv. Model. Earth Sy., 11, 2547–2566, https://doi.org/10.1029/2019MS001663, 2019. 
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of hydrologic processes in Earth System Models, Water Resour. Res., 51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015. 
Download
Short summary
Earth system (climate) model is an important instrument for projecting the global water cycle and climate change, in which tides are commonly excluded due to the much small timescales compared to the climate. However, we found that tides significantly impact the river water transport pathways, transport timescales, and concentrations in shelf seas. Thus, the tidal effect should be carefully considered in earth system models to accurately project the global water and biogeochemical cycle.