Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-3989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
US Geological Survey, Observing Systems Division, Hydrologic Remote Sensing Branch, 11 Sherman Place, Unit 5015, Storrs CT 06269, USA
Phillip Goodling
US Geological Survey, Maryland-Delaware-District of Colombia Water
Science Center, 5522 Research Park Drive, Catonsville MD 21228, USA
Zachary C. Johnson
US Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma WA 98402, USA
Karli M. Rogers
US Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville WV 25430, USA
Nathaniel P. Hitt
US Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville WV 25430, USA
Jennifer B. Fair
US Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville WV 25430, USA
US Geological Survey, New England Water Science Center, 10 Bearfoot
Road, Northborough MA 01532, USA
Craig D. Snyder
US Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville WV 25430, USA
Related authors
Henry Emerson Moore, Xavier Comas, Martin A. Briggs, Andrew S. Reeve, Khondaker Md. Nur Alam, and Lee D. Slater
EGUsphere, https://doi.org/10.5194/egusphere-2025-4567, https://doi.org/10.5194/egusphere-2025-4567, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study of three peat bogs in Maine, USA suggests surface pools receive groundwater from depth based on interactions with the underlying sediments. Geophysical surveys mapped sediments, while thermal imaging paired with point temperature and water conductivity measurements revealed local patterns pointing to groundwater sources. Such discrete inflows may accelerate peat decomposition and carbon loss.
Henry Emerson Moore, Xavier Comas, Martin A. Briggs, Andrew S. Reeve, Khondaker Md. Nur Alam, and Lee D. Slater
EGUsphere, https://doi.org/10.5194/egusphere-2025-4567, https://doi.org/10.5194/egusphere-2025-4567, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study of three peat bogs in Maine, USA suggests surface pools receive groundwater from depth based on interactions with the underlying sediments. Geophysical surveys mapped sediments, while thermal imaging paired with point temperature and water conductivity measurements revealed local patterns pointing to groundwater sources. Such discrete inflows may accelerate peat decomposition and carbon loss.
Phillip Goodling, Jennifer Fair, Amrita Gupta, Jeffrey Walker, Todd Dubreuil, Michael Hayden, and Benjamin Letcher
EGUsphere, https://doi.org/10.5194/egusphere-2025-1186, https://doi.org/10.5194/egusphere-2025-1186, 2025
Short summary
Short summary
This paper describes a stream monitoring method using low-cost cameras and a deep learning model. It produces a relative hydrograph (0–100%). We applied the method to 11 cameras at 8 sites and found model performance sufficient to describe floods and droughts. The models were trained on image pairs annotated by people. We examined how well people performed annotations and how many annotations were needed. We concluded this method can be used to gain new insights on under monitored small streams.
Cited articles
Barlow, P. M., Cunningham, W. L., Zhai, T., and Gray, M.: U.S. Geological
Survey Groundwater Toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): User guide for estimation of base flow, runoff, and groundwater recharge from streamflow data, US Geological Survey Techniques B.3, B10, 27, https://doi.org/10.3133/tm3B10, 2014.
Briggs, M. A., Lane, J. W., Snyder, C. D., White, E. A., Johnson, Z. C., Nelms, D. L., and Hitt, N. P.: Seismic data for study of shallow mountain
bedrock limits seepage-based headwater climate refugia, Shenandoah National
Park, Virginia, US Geological Survey data release [data set], https://doi.org/10.5066/F7JW8C04, 2017.
Briggs, M. A., Johnson, Z. C., Snyder, C. D., Hitt, N. P., Kurylyk, B. L.,
Lautz, L., Irvine, D. J., Hurley, S. T., and Lane, J. W.: Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals, Sci. Total Environ., 636, 1117–1127, https://doi.org/10.1016/j.scitotenv.2018.04.344, 2018a.
Briggs, M. A., Lane, J. W., Snyder, C. D., White, E. A., Johnson, Z. C., Nelms, D. L., and Hitt, N. P.: Shallow bedrock limits groundwater seepage-based headwater climate refugia, Limnologica, 68, 142–156,
https://doi.org/10.1016/j.limno.2017.02.005, 2018b.
Bundschuh, J.: Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems Computer model, J. Hydraul. Eng., 142, 427–444, 1993.
Burns, D. A., Murdoch, P. S., Lawrence, G. B., and Michel, R. L.: Effect of
groundwater springs on NO3/- concentrations during summer in Catskill Mountain streams, Water Resour. Res., 34, 1987–1996, 1998.
Buttle, J. M., Dillon, P. J., and Eerkes, G. R.: Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield, J. Hydrol., 287, 161–177, https://doi.org/10.1016/j.jhydrol.2003.09.022, 2004.
Condon, L. E., Atchley, A. L., and Maxwell, R. M.: Evapotranspiration depletes groundwater under warming over the contiguous United States, Nat.
Commun., 11, 873, https://doi.org/10.1038/s41467-020-14688-0, 2020.
Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M., and Goebel, P. C.: Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover,
Ecohydrology, 9, 1141–1153, https://doi.org/10.1002/eco.1712, 2016.
Covino, T.: Hydrologic connectivity as a framework for understanding
biogeochemical flux through watersheds and along fluvial networks, Geomorphology, 277, 133–144, https://doi.org/10.1016/j.geomorph.2016.09.030, 2017.
DeKay, R. H.: Development of ground-water supplies in Shenandoah National
Park, Virginia, Virginia Div. Miner. Resour. Rep. 10, Virginia Div. Miner. Resour., 194 pp., 1972.
Edge, C. B., Fortin, M. J., Jackson, D. A., Lawrie, D., Stanfield, L., and
Shrestha, N.: Habitat alteration and habitat fragmentation differentially
affect beta diversity of stream fish communities, Landsc. Ecol., 32, 647–662, https://doi.org/10.1007/s10980-016-0472-9, 2017.
Fausch, K. D., Torgersen, C. E., Baxter, C. V., and Li, H. W.: Landscapes to
riverscapes: Bridging the gap between research and conservation of stream
fishes, Bioscience, 52, 483–498, https://doi.org/10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2, 2002.
Flinchum, B. A., Holbrook, W. S., Grana, D., Parsekian, A. D., Carr, B. J.,
Hayes, J. L., and Jiao, J.: Estimating the water holding capacity of the
critical zone using near-surface geophysics, Hydrol. Process., 32, 3308–3326, https://doi.org/10.1002/hyp.13260, 2018.
Furze, S., Sullivan, A. M. O., Allard, S., Pronk, T., and Curry, R. A.: A
High-Resolution, Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and Post-Glacial Terrain, Remote Sens., 13, 1–23,
https://doi.org/10.3390/rs13214210, 2021.
Goodling, P. J., Briggs, M. A., White, E. A., Johnson, Z. C., Haynes, A. B.,
Nelms, D. L., and Lane, J. W.: Passive seismic data collected along headwater stream corridors in Shenandoah National Park in 2016–2020, US Geol. Surv. Data Release [data set], https://doi.org/10.5066/P9IJMGIB, 2020.
Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W., and Briggs, M. A.:
Continental-scale analysis of shallow and deep groundwater contributions to
streams, Nat. Commun., 12, 1450, https://doi.org/10.1038/s41467-021-21651-0, 2021.
Herzog, S. P., Ward, A. S., and Wondzell, S. M.: Multiscale Feature-feature
Interactions Control Patterns of Hyporheic Exchange in a Simulated Headwater
Mountain Stream, Water Resour. Res., 55, 10976–10992, https://doi.org/10.1029/2019WR025763, 2019.
Hopper, G. W., Gido, K. B., Pennock, C. A., Hedden, S. C., Frenette, B. D.,
Barts, N., Hedden, C. K., and Bruckerhoff, L. A.: Nowhere to swim: interspecific responses of prairie stream fishes in isolated pools during
severe drought, Aquat. Sci., 82, 1–15, https://doi.org/10.1007/s00027-020-0716-2, 2020.
Ilja Van Meerveld, H. J., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S.,
and Seibert, J.: Expansion and contraction of the flowing stream network
alter hillslope flowpath lengths and the shape of the travel time distribution, Hydrol. Earth Syst. Sci., 23, 4825–4834,
https://doi.org/10.5194/hess-23-4825-2019, 2019.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., and Wondzell,
S. M.: Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources, Water Resour. Res., 46, 1–18, https://doi.org/10.1029/2009WR008818, 2010.
Johnson, Z. C., Snyder, C. D., and Hitt, N. P.: Landformfeatures and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams, Water Resour. Res., 53, 5788–5812, https://doi.org/10.1002/2017WR020455, 2017.
Johnson, Z. C., Johnson, B. G., Briggs, M. A., Devine, W. D., Snyder, C. D.,
Hitt, N. P., Hare, D. K., and Minkova, T. V.: Paired air-water annual
temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales, J. Hydrol., 587, 124929,
https://doi.org/10.1016/j.jhydrol.2020.124929, 2020.
Kauffman, L. J., Yager, R. M., and Reddy, J. E.: Sediment and Aquifer
Characteristics of Quaternary Sediments in the Glaciated Conterminous United
States, US Geol. Surv. data release [data set], https://doi.org/10.5066/F7HH6J8X, 2018.
Labbe, T. R. and Fausch, K. D.: Dynamics of intermittent stream habitat
regulate persistence of a threatened fish at multiple scales, Ecol. Appl., 10, 1774–1791, https://doi.org/10.1890/1051-0761(2000)010[1774:DOISHR]2.0.CO;2, 2000.
Lapham, W. W.: Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity, US Geol. Surv. Water-Supply Pap. 2337, US Geological Survey, https://doi.org/10.3133/wsp2337, 1989.
Larkin, R. G. and Sharp, J. M.: On the relationship between river-basin
geomorphology, aquifer hydraulics, and ground-water flow direction in
alluvial aquifers, Geol. Soc. Am. Bull., 104, 1608–1620, 1992.
Litwin, D. G., Tucker, G. E., Barnhart, K. R., and Harman, C. J.: Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes, J. Geophys. Res.-Earth, 127, 1–36, https://doi.org/10.1029/2021JF006239, 2022.
Lynch, D. D.: Hydrologic conditions and trends in Shenandoah National Park,
Virginia, 1983–84, Water-Resour. Investig. Rep. 87-4131, US Geological Survey, https://doi.org/10.3133/wri874131, 1987.
Magoulick, D. D. and Kobza, R. M.: The role of refugia for fishes during
drought: A review and synthesis, Freshw. Biol., 48, 1186–1198,
https://doi.org/10.1046/j.1365-2427.2003.01089.x, 2003.
McLachlan, P. J., Chambers, J. E., Uhlemann, S. S., and Binley, A.: Geophysical characterisation of the groundwater–surface water interface,
Adv. Water Resour., 109, 302–319, https://doi.org/10.1016/j.advwatres.2017.09.016, 2017.
Morgan, B. A. and Wieczorek, G. F.: Inventory of debris flows and landslides resulting from the June 27, 1995, storm in the North Fork Moormans River, Shenandoah National Park, Virginia, US Geological Survey Open-File Report 96-503, US Geological Survey, p. 10, https://pubs.usgs.gov/of/1999/ofr-99-0518/ofr-99-0518.html (last access: 3 August 2022), 1996.
Nelms, D. L. and Moberg, R. M.: Preliminary Assessment of the Hydrogeology
and Groundwater Availability in the Metamorphic and Siliciclastic Fractured-Rock Aquifer Systems of Warren County, Virginia, US Geol. Surv.
Investig. Rep. 2010-5190, US Geological Survey, https://doi.org/10.3133/sir20105190, 2010.
Odom, W. E., Doctor, D. H., Burke, C. E., and Cox, C. L.: Using high-resolution LiDAR and deep learning models to generate mimum thickness
maps of surficial sediments, in: Geological Society of America Abstracts
with Programs, v. 53, The Geological Society of America, https://doi.org/10.1130/abs/2021AM-367681, 2021.
O'Sullivan, A. M., Devito, K. J., Ogilvie, J., Linnansaari, T., Pronk, T.,
Allard, S., and Curry, R. A.: Effects of Topographic Resolution and Geologic
Setting on Spatial Statistical River Temperature Models, Water Resour. Res.,
56, 1–23, https://doi.org/10.1029/2020WR028122, 2020.
Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., and Wondzell,
S. M.: Channel water balance and exchange with subsurface flow along a
mountain headwater stream in Montana, United States, Water Resour. Res., 45,
W11427, https://doi.org/10.1029/2008wr007644, 2009.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling, J. Adv. Model. Earth Syst., 8, 41–65, https://doi.org/10.1002/2015MS000526, 2016.
Plummer, L. N., Busenberg, E., Bohlke, J. K., Nelms, D. L., Michel, R. L., and Schlosser, P.: Groundwater residence times in Shenandoah National Park,
Blue Ridge Mountains, Virginia, USA: a multi-tracer approach, Chem. Geol.,
179, 93–111, 2001.
Rolls, R. J., Leigh, C., and Sheldon, F.: Mechanistic effects of low-flow
hydrology on riverine ecosystems: Ecological principles and consequences of
alteration, Freshwater Sci., 31, 1163–1186, https://doi.org/10.1899/12-002.1, 2012.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., and Shimizu, T.: Stormflow generation in steep forested headwaters: A linked
hydrogeomorphic paradigm, Hydrol. Process., 14, 369–385,
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P, 2000.
Singha, K. and Navarre-Sitchler, A.: The importance of groundwater in critical zone science, Groundwater, 60, 27–34, https://doi.org/10.1111/gwat.13143, 2021.
Snyder, C. D., Webb, J. R., Young, J. A., Johnson, Z. B., Jewell, S., and
US Geological Survey: Significance of Headwater Streams and Perennial Springs in Ecological Monitoring in Shenandoah National Park, Open-File Rep. 2013-1178, US Geological Survey, 46 pp., https://doi.org/10.3133/ofr20131178, 2013.
Snyder, C. D., Hitt, N. P., and Young, J. A.: Accounting for groundwater in
stream fish thermal habitat responses to climate change, Ecol. Appl., 25, 281–304, 2015.
Snyder, C. D., Hitt, N. P., and Johnson, Z. C.: Air-water temperature data
for the study of groundwater influence on stream thermal regimes in
Shenandoah National Park, Virginia, US Geological Survey data release [data set], https://doi.org/10.5066/F7B56H72, 2017.
Southworth, S., Aleinikoff, J. N., Bailey, C. M., Burton, W. C., Crider, E.
A., Hackley, P. C., Smoot, J. P., and Tollo, R. P.: Geologic Map of the
Shenandoah National Park Region, Virginia, US Geol. Surv. Open-File Rep. 2009-1153, US Geological Survey, 1 pp., https://pubs.usgs.gov/of/2009/1153/ (last access: 15 July 2021), 2009.
Stonestrom, D. A. and Constantz, J.: Heat as a Tool for Studying the Movement of Ground Water Near Streams, US Geol. Surv. Circ. 1260, US Geological Survey, 96 pp., https://doi.org/10.3133/cir1260, 2003.
Sullivan, C., Vokoun, J., Helton, A., Briggs, M. A., and Kurylyk, B.: An
ecohydrological typology for thermal refuges in streams and rivers,
Ecohydrology, 14, e2295, https://doi.org/10.1002/eco.2295, 2021.
Tiwari, T., Buffam, I., Sponseller, R. A., and Laudon, H.: Inferring scale-dependent processes influencing stream water biogeochemistry from
headwater to sea, Limnol. Oceanogr., 62, S58–S70, https://doi.org/10.1002/lno.10738, 2017.
Tonina, D. and Buffington, J. M.: Hyporheic Exchange in Mountain Rivers I:
Mechanics and Environmental Effects, Geogr. Compass, 3, 1063–1086,
https://doi.org/10.1111/j.1749-8198.2009.00226.x, 2009.
Tran, H., Zhang, J., Cohard, J. M., Condon, L. E., and Maxwell, R. M.:
Simulating Groundwater-Streamflow Connections in the Upper Colorado River
Basin, Groundwater, 58, 392–405, https://doi.org/10.1111/gwat.13000, 2020.
Ward, A. S., Schmadel, N. M., and Wondzell, S. M.: Simulation of dynamic
expansion, contraction, and connectivity in a mountain stream network, Adv.
Water Resour., 114, 64–82, https://doi.org/10.1016/j.advwatres.2018.01.018, 2018.
Ward, A. S., Wondzell, S. M., Schmadel, N. M., and Herzog, S. P.: Climate
Change Causes River Network Contraction and Disconnection in the H. J. Andrews Experimental Forest, Oregon, USA, Front. Water, 2, 1–10,
https://doi.org/10.3389/frwa.2020.00007, 2020.
Warix, S. R., Godsey, S. E., Lohse, K. A., and Hale, R. L.: Influence of
groundwater and topography on stream drying in semi-arid headwater streams,
Hydrol. Process., 35, 1–18, https://doi.org/10.1002/hyp.14185, 2021.
Weekes, A. A., Torgersen, C. E., Montgomery, D. R., Woodward, A., and Bolton, S. M.: Hydrologic response to valley-scale structure in alpine headwaters, Hydrol. Process., 29, 356–372, https://doi.org/10.1002/hyp.10141, 2015.
Wehrly, K., Wang, L., and Mitro, M.: Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature
fluctuation, Trans. Am. Fish. Soc., 136, 365–374, 2007.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M.: Ground water
and surface water: a single resource, US Geol. Surv. Circ. 1139, US Geological Survey, 79 pp., https://doi.org/10.3133/cir1139, 1998.
Wohl, E.: Connectivity in rivers, Prog. Phys. Geogr., 41, 345–362,
https://doi.org/10.1177/0309133317714972, 2017.
Wu, L., Gomez-Velez, J. D., Krause, S., Singh, T., Wörman, A., and
Lewandowski, J.: Impact of Flow Alteration and Temperature Variability on
Hyporheic Exchange, Water Resour. Res., 56, 3, https://doi.org/10.1029/2019WR026225, 2020.
Yanamaka, H., Takemura, M., Ishida, H., and Niwa, M.: Characteristics of
long-period microtremors and their applicability in exploration of deep
sedimentary layers, Bull. Seismol. Soc. Am., 84, 1831–1841, 1994.
Zimmer, M. A. and McGlynn, B. L.: Bidirectional stream–groundwater flow in
response to ephemeral and intermittent streamflow and groundwater seasonality, Hydrol. Process., 31, 3871–3880, https://doi.org/10.1002/hyp.11301, 2017.
Executive editor
As also stated by both reviewers, this work is important and timely. It combines data from several sources to highlight the role of fine-scale hydrogeological features on hydrological processes. As nicely stated by reviewer 2: “The work addresses important questions regarding the description of connectivity and interaction between groundwater and surface water in mountainous catchments. The authors develop in their paper an interesting vision at the interfaces between geomorphology, hydrology and hydroecology (principally fish habitats)
As also stated by both reviewers, this work is important and timely. It combines data from...
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
The geologic structure of mountain watersheds may control how groundwater and streamwater...