Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-1937-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1937-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and validation of a new MODIS snow-cover-extent product over China
Xiaohua Hao
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Zhaojun Zheng
National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
Key Laboratory of Radiometric Calibration and Validation for Environmental satellites, China Meteorological Administration, Beijing 100081, China
Xingliang Sun
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Engineering Laboratory for National Geographic State Monitoring, Lanzhou Jiaotong University, Lanzhou 730070, China
Wenzheng Ji
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Hongyu Zhao
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Jian Wang
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Hongyi Li
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Xiaoyan Wang
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Related authors
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Fangbo Pan, Lingmei Jiang, Gongxue Wang, Jinmei Pan, Jinyu Huang, Cheng Zhang, Huizhen Cui, Jianwei Yang, Zhaojun Zheng, Shengli Wu, and Jiancheng Shi
Earth Syst. Sci. Data, 16, 2501–2523, https://doi.org/10.5194/essd-16-2501-2024, https://doi.org/10.5194/essd-16-2501-2024, 2024
Short summary
Short summary
It is important to strengthen the continuous monitoring of snow cover as a key indicator of imbalance in the Asian Water Tower (AWT) region. We generate long-term daily gap-free fractional snow cover products over the AWT at 0.005° resolution from 2000 to 2022 based on the multiple-endmember spectral mixture analysis algorithm and the gap-filling algorithm. They can provide highly accurate, quantitative fractional snow cover information for subsequent studies on hydrology and climate.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Hui Guo, Xiaoyan Wang, Zecheng Guo, Gaofeng Zhu, Tao Che, Jian Wang, Xiaodong Huang, Chao Han, and Zhiqi Ouyang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-229, https://doi.org/10.5194/tc-2022-229, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow phenology is a seasonal pattern in snow cover and snowfall. In this review, we found that during the past 50 years in the Northern Hemisphere, the snow cover end date has shown a significantly advanced change trend. Eurasia contributes more to the snow phenology in the Northern Hemisphere than does North America. Snow phenology is related to climate and atmospheric circulation, and the response to vegetation phenology depends on geographical regions, temperature and precipitation gradients.
Yan Huang, Jiahui Xu, Jingyi Xu, Yelei Zhao, Bailang Yu, Hongxing Liu, Shujie Wang, Wanjia Xu, Jianping Wu, and Zhaojun Zheng
Earth Syst. Sci. Data, 14, 4445–4462, https://doi.org/10.5194/essd-14-4445-2022, https://doi.org/10.5194/essd-14-4445-2022, 2022
Short summary
Short summary
Reliable snow cover information is important for understating climate change and hydrological cycling. We generate long-term daily gap-free snow products over the Tibetan Plateau (TP) at 500 m resolution from 2002 to 2021 based on the hidden Markov random field model. The accuracy is 91.36 %, and is especially improved during snow transitional period and over complex terrains. This dataset has great potential to study climate change and to facilitate water resource management in the TP.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022, https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Xiaodong Huang, Changyu Liu, Zhaojun Zheng, Yunlong Wang, Xubing Li, and Tiangang Liang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-202, https://doi.org/10.5194/tc-2020-202, 2020
Revised manuscript not accepted
Short summary
Short summary
In the study, the long-term snow cover variation and distribution characteristics are illustrated across China during the period of 1951–2018, using the snow depth dataset retrieve from the National Meteorological Information Center of the China Meteorological Administration. The geographical and meteorological factors were closely related to snow cover change, especially the change in temperature, which will lead to significant changes in snow depth and phenology in mainland China.
Tao Che, Xin Li, Shaomin Liu, Hongyi Li, Ziwei Xu, Junlei Tan, Yang Zhang, Zhiguo Ren, Lin Xiao, Jie Deng, Rui Jin, Mingguo Ma, Jian Wang, and Xiaofan Yang
Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, https://doi.org/10.5194/essd-11-1483-2019, 2019
Short summary
Short summary
The paper presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin in China. These data are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote-sensing products and hydrological models in cold regions for a broader community.
Kashif Jamal, Shakil Ahmad, Xin Li, Muhammad Rizwan, Hongyi Li, and Jiaojiao Feng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-548, https://doi.org/10.5194/hess-2018-548, 2018
Preprint withdrawn
Short summary
Short summary
This research article address understanding and prediction of projected changes in runoff of cryosphere catchment. The key focus of this research is to predict the runoff contribution and sensitivity at different altitude ranges (that was not studied before) in the response of projected climate and how the response change to the climate variables. This research clearly fulfill the gap found in previous researches using simple approach.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-289, https://doi.org/10.5194/tc-2016-289, 2017
Revised manuscript not accepted
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and used it to simulate the long-term change of frozen ground and hydrological impacts in the upper Heihe basin. Results showed that the permafrost area shrank by 9.5 %, and frozen depth of seasonally frozen ground decreased at a rate of 4.1 cm/10 yr. Runoff increased in cold season due to the increase in liquid soil moisture. Groundwater recharge was enhanced due to the degradation of permafrost.
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Detecting snowfall events over the Arctic using optical and microwave satellite measurements
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Processes governing snow ablation in alpine terrain – detailed measurements from the Canadian Rockies
Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record
Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand
Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product
The recent developments in cloud removal approaches of MODIS snow cover product
Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA
Assessment of a multiresolution snow reanalysis framework: a multidecadal reanalysis case over the upper Yampa River basin, Colorado
Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S) during the years 2000–2016
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
A snow cover climatology for the Pyrenees from MODIS snow products
Cloud obstruction and snow cover in Alpine areas from MODIS products
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
Early 21st century snow cover state over the western river basins of the Indus River system
Validation of the operational MSG-SEVIRI snow cover product over Austria
Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan
Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years
Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024, https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023, https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Short summary
We assessed and compared the glacier areal retreat rate and surface thinning rate and the effects of topography, debris cover and proglacial lakes in the west Nyainqentanglha Range (WNT) during 1976–2000 and 2000–2020. Our study will help us to better understand the glacier change characteristics in the WNT on a long timescale and will serve as a reference for glacier changes in other regions on the Tibetan Plateau.
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023, https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Dorothy K. Hall, George A. Riggs, Nicolo E. DiGirolamo, and Miguel O. Román
Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, https://doi.org/10.5194/hess-23-5227-2019, 2019
Short summary
Short summary
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging Spectroradiometer (MODIS), and since 2000 and 2011 from the Suomi National Polar-orbiting Partnership (S-NPP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), respectively. These products are used extensively in hydrological modeling and climate studies. New, daily cloud-gap-filled snow products are available from both MODIS and VIIRS, and are being used to develop an Earth science data record.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Andri Gunnarsson, Sigurður M. Garðarsson, and Óli G. B. Sveinsson
Hydrol. Earth Syst. Sci., 23, 3021–3036, https://doi.org/10.5194/hess-23-3021-2019, https://doi.org/10.5194/hess-23-3021-2019, 2019
Short summary
Short summary
In this study a gap-filled snow cover product for Iceland is developed using MODIS satellite data and validated with both in situ observations and alternative remote sensing data sources with good agreement. Information about snow cover extent, duration and changes over time is presented, indicating that snow cover extent has been increasing slightly for the past few years.
Xinghua Li, Yinghong Jing, Huanfeng Shen, and Liangpei Zhang
Hydrol. Earth Syst. Sci., 23, 2401–2416, https://doi.org/10.5194/hess-23-2401-2019, https://doi.org/10.5194/hess-23-2401-2019, 2019
Short summary
Short summary
This paper is a review article on the cloud removal methods of MODIS snow cover products.
Rose Petersky and Adrian Harpold
Hydrol. Earth Syst. Sci., 22, 4891–4906, https://doi.org/10.5194/hess-22-4891-2018, https://doi.org/10.5194/hess-22-4891-2018, 2018
Short summary
Short summary
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral snowpacks melt earlier and provide less soil water input in the spring. Elevation is strongly correlated with whether snowpacks are ephemeral or seasonal. Snowpacks were also more likely to be ephemeral on south-facing slopes than north-facing slopes at high elevations. In warm years, the Great Basin shifts to ephemerally dominant as rain becomes more prevalent at increasing elevations.
Elisabeth Baldo and Steven A. Margulis
Hydrol. Earth Syst. Sci., 22, 3575–3587, https://doi.org/10.5194/hess-22-3575-2018, https://doi.org/10.5194/hess-22-3575-2018, 2018
Short summary
Short summary
Montane snowpacks are extremely complex to represent and usually require assimilating remote sensing images at very fine spatial resolutions, which is computationally expensive. Adapting the grid size of the terrain to its complexity was shown to cut runtime and storage needs by half while preserving the accuracy of ~ 100 m snow estimates. This novel approach will facilitate the large-scale implementation of high-resolution remote sensing data assimilation over snow-dominated montane ranges.
Alejandra Stehr and Mauricio Aguayo
Hydrol. Earth Syst. Sci., 21, 5111–5126, https://doi.org/10.5194/hess-21-5111-2017, https://doi.org/10.5194/hess-21-5111-2017, 2017
Short summary
Short summary
In Chile there is a lack of hydrological data, which complicates the analysis of important hydrological processes. In this study we validate a remote sensing product, i.e. the MODIS snow product, in Chile using ground observations, obtaining good results. Then MODIS was use to evaluated snow cover dynamic during 2000–2016 at five watersheds in Chile. The analysis shows that there is a significant reduction in snow cover area in two watersheds located in the northern part of the study area.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
P. Da Ronco and C. De Michele
Hydrol. Earth Syst. Sci., 18, 4579–4600, https://doi.org/10.5194/hess-18-4579-2014, https://doi.org/10.5194/hess-18-4579-2014, 2014
Short summary
Short summary
The negative impacts of cloud obstruction in snow mapping from MODIS and a new reliable cloud removal procedure for the Italian Alps.
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, https://doi.org/10.5194/hess-18-4601-2014, 2014
P. B. Kirchner, R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo
Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014, https://doi.org/10.5194/hess-18-4261-2014, 2014
Short summary
Short summary
In this study we present results from LiDAR snow depth measurements made over 53 sq km and a 1600 m elevation gradient. We found a lapse rate of 15 cm accumulated snow depth and 6 cm SWE per 100 m in elevation until 3300 m, where depth sharply decreased. Residuals from this trend revealed the role of aspect and highlighted the importance of solar radiation and wind for snow distribution. Lastly, we compared LiDAR SWE estimations with four model estimates of SWE and total precipitation.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Surer, J. Parajka, and Z. Akyurek
Hydrol. Earth Syst. Sci., 18, 763–774, https://doi.org/10.5194/hess-18-763-2014, https://doi.org/10.5194/hess-18-763-2014, 2014
V. López-Burgos, H. V. Gupta, and M. Clark
Hydrol. Earth Syst. Sci., 17, 1809–1823, https://doi.org/10.5194/hess-17-1809-2013, https://doi.org/10.5194/hess-17-1809-2013, 2013
T. Y. Lakhankar, J. Muñoz, P. Romanov, A. M. Powell, N. Y. Krakauer, W. B. Rossow, and R. M. Khanbilvardi
Hydrol. Earth Syst. Sci., 17, 783–793, https://doi.org/10.5194/hess-17-783-2013, https://doi.org/10.5194/hess-17-783-2013, 2013
A. A. Tahir, P. Chevallier, Y. Arnaud, and B. Ahmad
Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, https://doi.org/10.5194/hess-15-2275-2011, 2011
J. Wang, H. Li, and X. Hao
Hydrol. Earth Syst. Sci., 14, 1979–1987, https://doi.org/10.5194/hess-14-1979-2010, https://doi.org/10.5194/hess-14-1979-2010, 2010
J. L. Hood and M. Hayashi
Hydrol. Earth Syst. Sci., 14, 901–910, https://doi.org/10.5194/hess-14-901-2010, https://doi.org/10.5194/hess-14-901-2010, 2010
Cited articles
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T. J.: Snow depth
derived from passive microwave remote-sensing data in China, Ann. Glaciol.,
49, 145–154, https://doi.org/10.3189/172756408787814690, 2008.
Chen, S., Wang, X., Guo, H., Xie, P., Wang, J., and Hao, X.: A Conditional
Probability Interpolation Method Based on a Space-Time Cube for MODIS Snow
Cover Products Gap Filling, Remote Sens., 12, 3577, https://doi.org/10.3390/rs12213577,
2020.
Chen, S. B., Yang, Q., Xie, H. J., Zhou, C., and Lu, P.: Time series of snow
cover data of Northeast China (2004–2013), Acta Geographica Sinica, 69,
178–184, 2014.
Dai, L. Y., Che, T., and Ding, Y. J.: Inter-calibrating SMMR, SSM/I and
SSMI/S data to improve the consistency of snow-depth products in China,
Remote Sens., 7, 7212–7230, https://doi.org/10.3390/rs70607212, 2015.
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and
Robinson, D. A.: A review of global satellite-derived snow products, Adv.
Space Res., 50, 1007–1029, https://doi.org/10.1016/j.asr.2011.12.021, 2012.
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009.
Gafurov, A., Lüdtke, S., Unger-Shayesteh, K., Vorogushyn, S., Schöne, T.,
Schmidt, S., Kalashnikova, O., and Merz, B.: MODSNOW-Tool: an operational
tool for daily snow cover monitoring using MODIS data, Environ. Earth Sci.,
75, 1078, https://doi.org/10.1007/S12665-016-5869-X, 2016.
Gao, Y., Xie, H. J., Yao, T. D., and Xue, C. S.: Integrated assessment on
multi-temporal and multi-sensor combinations for reducing cloud obscuration
of MODIS snow cover products of the Pacific Northwest USA, Remote Sens.
Environ., 114, 1662–1675, https://doi.org/10.1016/j.rse.2010.02.017, 2010.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow
products, Hydrol. Process., 21, 1534–1547, https://doi.org/10.1002/hyp.6715, 2007.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: Development of Methods for
Mapping Global Snow Cover Using Moderate Resolution Imaging
Spectroradiometer Data, Remote Sens. Environ., 54, 127–140, https://doi.org/10.1016/0034-4257(95)00137-P, 1995.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr,
K. J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194,
https://doi.org/10.1016/S0034-4257(02)00095-0, 2002.
Hall, D. K., Riggs, G. A., DiGirolamo, N. E., and Román, M. O.: Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record, Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, 2019.
Hao, X.: A new MODIS snow cover extent product over China (2000–2020), National Tibetan Plateau Data Center (NTPDC) [data set], https://doi.org/10.11888/Snow.tpdc.271387, 2021.
Hao, X., Huang, G., Che, T., Ji, W., Sun, X., Zhao, Q., Zhao, H., Wang, J., Li, H., and Yang, Q.: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research, Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, 2021.
Hao, X. H., Wang, J., and Li, H. Y.: Evaluation of the NDSI threshold value
in mapping snow cover of MODIS – a case study of snow in the Middle Qilian
Mountains, Journal of Glaciology and Geocryology, 30, 132–138, 2008.
Hao, X. H., Luo, S. Q., Che, T., Wang, J., Li, H. Y., Dai, L. Y., Huang, X.
D., and Feng, Q. S.: Accuracy assessment of four cloud-free snow cover
products over the Qinghai-Tibetan Plateau, Int. J. Digit. Earth, 12,
375–393, https://doi.org/10.1080/17538947.2017.1421721, 2019.
Henderson, G. R., Peings, Y., Furtado, J. C., and Kushner, P. J.:
Snow-atmosphere coupling in the Northern Hemisphere, Nat. Clim. Change, 8,
954–963, https://doi.org/10.1038/s41558-018-0295-6, 2018.
Huang, G. H., Li, Z. Q., Li, X., Liang, S. L., Yang, K., Wang, D. D., and
Zhang, Y.: Estimating surface solar irradiance from satellites: Past,
present, and future perspectives, Remote Sens. Environ., 233, 111371,
https://doi.org/10.1016/j.rse.2019.111371, 2019.
Huang, G. H., Li, X., Lu, N., Wang, X. F., and He, T.: A General
Parameterization Scheme for the Estimation of Incident Photosynthetically
Active Radiation Under Cloudy Skies, IEEE T. Geosci. Remote, 58, 6255–6265,
https://doi.org/10.1109/Tgrs.2020.2976103, 2020.
Huang, X., Deng, J., Ma, X., Wang, Y., Feng, Q., Hao, X., and Liang, T.: Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China, The Cryosphere, 10, 2453–2463, https://doi.org/10.5194/tc-10-2453-2016, 2016.
Huang, X. D., Hao, X. H., Feng, Q. S., Wang, W., and Liang, T. G.: A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau, Sciences in Cold and Arid Regions, 6, 116–123, 2014.
Huang, Y., Liu, H. X., Yu, B. L., We, J. P., Kang, E. L., Xu, M., Wang, S.
J., Klein, A., and Chen, Y. N.: Improving MODIS snow products with a
HMRF-based spatio-temporal modelling technique in the Upper Rio Grande
Basin, Remote Sens. Environ., 204, 568–582, https://doi.org/10.1016/j.rse.2017.10.001,
2018.
Hüsler, F., Jonas, T., Wunderle, S., and Albrecht, S.: Validation of a
modified snow cover retrieval algorithm from historical 1-km AVHRR data over
the European Alps, Remote Sens. Environ., 121, 497–515,
https://doi.org/10.1016/j.rse.2012.02.018, 2012.
Klein, A. G. and Barnett, A. C.: Validation of daily MODIS snow cover maps
of the Upper Rio Grande River Basin for the 2000-2001 snow year, Remote
Sens. Environ., 86, 162–176, https://doi.org/10.1016/S0034-4257(03)00097-X, 2003.
Li, H. Y., Li, X., Yang, D. W., Wang, J., Gao, B., Pan, X. D., Zhang, Y. L.,
and Hao, X. H.: Tracing snowmelt paths in an integrated hydrological model
for understanding seasonal snowmelt contribution at basin scale, J. Geophys.
Res.-Atmos., 124, 8874–8895, https://doi.org/10.1029/2019JD030760, 2019.
Liang, T. G., Huang, X. D., Wu, C. X., Liu, X. Y., Li, W. L., Guo, Z. G.,
and Ren, J. Z.: An application of MODIS data to snow cover monitoring in a
pastoral area: A case study in Northern Xinjiang, China, Remote Sens.
Environ., 112, 1514–1526, https://doi.org/10.1016/j.rse.2007.06.001, 2008.
Maurer, E. P., Rhoads, J. D., Dubayah, R. O., and Lettenmaier, D. P.:
Evaluation of the snow-covered area data product from MODIS, Hydrol.
Process., 17, 59–71, https://doi.org/10.1002/hyp.1193, 2003.
Muhammad, S. and Thapa, A.: An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018, Earth Syst. Sci. Data, 12, 345–356, https://doi.org/10.5194/essd-12-345-2020, 2020.
Munoz, S. J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019.
Parajka, J., Holko, L., Kostka, Z., and Blöschl, G.: MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites, Hydrol. Earth Syst. Sci., 16, 2365–2377, https://doi.org/10.5194/hess-16-2365-2012, 2012.
Pontius Jr., R. G. and Millones, M.: Death to Kappa: birth of quantity
disagreement and allocation disagreement for accuracy assessment, Int. J.
Remote Sens., 32, 4407–4429, https://doi.org/10.1080/01431161.2011.552923, 2011.
Poon, S. K. M. and Valeo, C.: Investigation of the MODIS snow mapping
algorithm during snowmelt in the northern boreal forest of Canada, Can. J.
Remote Sens., 32, 254–267, https://doi.org/10.5589/M06-022, 2006.
Riggs, G. A., Hall, D. K., and Salomonson, V. V.: MODIS Snow products user guide to collection 5, NSIDC – US National Snow and Ice Data Center, Boulder, CO, http://modis-snow-ice.gsfc.nasa.gov/?c=userguide (last access: 13 April 2022), 2006.
Riggs, G. A., Hall, D. K., and Roman, M. O.: MODIS snow products user guide for collection 6, NSIDC – US National Snow and Ice Data Center, Boulder, CO, http://modis-snow-ice.gsfc.nasa.gov/?c=userguide (last access: 13 April 2022), 2016.
Stehman, S. V. and Foody, G. M.: Key issues in rigorous accuracy assessment
of land cover products, Remote Sens. Environ., 231,111199, https://doi.org/10.1016/J.Rse.2019.05.018, 2019.
Wang, L. L., Qu, J. J., Xiong, X. X., Hao, X. J., Xie, Y., and Che, N. Z.: A
new method for retrieving band 6 of Aqua MODIS, IEEE T. Geosci. Remote S., 3,
267–270, https://doi.org/10.1109/Lgrs.2006.869966, 2006.
Wang, X. Y., Wang, J., Jiang, Z. Y., Li, H. Y., and Hao, X. H.: An effective
method for snow-cover mapping of dense coniferous forests in the upper Heihe
River Basin using Landsat Operational Land Imager data, Remote Sens., 7,
17246–17257, https://doi.org/10.3390/rs71215882, 2015.
Wang, X. Y., Chen, S. Y., and Wang, J.: An adaptive snow identification
algorithm in the forests of Northeast China, IEEE J-Stars, 13, 5211–5222, https://doi.org/10.1109/Jstars.2020.3020168, 2020.
Warren, S. G.: Optical-Properties of Snow, Rev. Geophys., 20, 67–89, https://doi.org/10.1029/Rg020i001p00067, 1982.
Wu, X., Naegeli, K., Premier, V., Marin, C., Ma, D., Wang, J., and Wunderle, S.: Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas, The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, 2021.
Xiao, P. F., Li, C. X., Zhu, L. J., Zhang, X. L., Ma, T. Y., and Feng, X.
Z.: Multitemporal ensemble learning for snow cover extraction from
high-spatial-resolution images in mountain areas, Int. J. Remote Sens., 41,
1668–1691, https://doi.org/10.1080/01431161.2019.1674458, 2020.
Zhang, H. B., Zhang, F., Zhang, G. Q., Che, T., Yan, W., Ye, M., and Ma, N.:
Ground-based evaluation of MODIS snow cover product V6 across China:
Implications for the selection of NDSI threshold, Sci. Total Environ., 651,
2712–2726, https://doi.org/10.1016/j.scitotenv.2018.10.128, 2019.
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is...